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Abstract
This book brings together a representative set of Earth System Science (ESS XE "ESS" ) applications of the neural network (NN XE "NN" ) technique.  It examines a progression of atmospheric and oceanic problems, which, from the mathematical point of view, can be formulated as complex, multidimensional, and nonlinear mappings.   It is shown that these problems can be solved utilizing a particular type of NN – the multilayer perceptron (MLP XE "MLP" ). This type of NN applications covers the majority of NN applications developed in ESSs such as meteorology XE "meteorology" , oceanography, numerical weather XE "weather"  prediction, and climate XE "climate"  studies.  The goal of this book is to be tutorial in nature rather than to give a complete description of ESS NN applications.  Some particular interesting applications are selected and the presentation is concentrated on a clear introduction of the methodological basis of these applications.  Among particular groups of NN applications presented in this book are: atmospheric and oceanic satellite remote sensing forward and inverse problems (or satellite retrievals XE "satellite retrievals" ); NN emulations of model physics XE "model physics"  for atmospheric and oceanic hybrid numerical models; different NN ensemble XE "ensemble"  applications including applications in data assimilation systems, nonlinear multi-model ensembles, ensembles with perturbed model physics, and other applications. The many examples demonstrate the tremendous power and flexibility of the NN emulation XE "NN:emulation"  technique and show how various methods can be designed to bypass or reduce limitations of this technique. The major properties of the mappings and MLP NNs are formulated and discussed.  Also, the book presents basic background for each introduced application and provides an extensive and scholarly set of references giving extended background and further detail to the interested reader on each examined application.  This book can serve as a text book and an introductory reading for students and beginning and advanced investigators in learning how to apply the NN emulation XE "NN:emulation"  technique to a wide range XE "range"  of ESS problems.
Preface 
This book introduces some applications of Computational Intelligence (CI XE "CI" ) to problems of Earth System Science (ESS XE "ESS" ).  In my opinion, the meeting of CI and ESSs is not a coincidence.  There is an affinity between these two fields of science at a very deep level.  Both of them use a systems approach; they see their object as a complex system XE "system"  of partly autonomous, evolving, and adaptive subsystems intensively interacting with each other and with their environment, which also changes due to the interaction between subsystems and due to changes of the subsystems.  This deep affinity between the two fields makes the approaches and tools developed in CI well-suited for solving many problems in ESSs. 
Such a system XE "system"  vision of objects of the study stimulates an understanding of similarity of many ESS XE "ESS"  problems from the mathematical point of view.  In this book I show that many subsystems of Earth System (ES XE "ES" ) can be considered as complex multi-dimensional nonlinear mappings.  CI XE "CI"  provides a number of tools to approximate, emulate, or model such mappings; the particular tool considered in this book is the neural network (NN XE "NN" ) technique.  This book demonstrates many successful applications of NNs in ESSs.  However, in addition to the use of the NN technique, I also attempt to demonstrate in ESS the advantages of using the CI vision of a subsystem XE "subsystem"  (mapping XE "mapping" ) not as a static mapping but as an adaptive, evolving mapping interacting with the environment and adapting to it.  The tremendous flexibility of the NN technique provides a means for modeling such evolving adaptive mappings that function in a changing environment.  

My goal in this book is to be tutorial in nature rather than to give a complete description of ESS NN applications. Thus, I selected some particular interesting applications and concentrated on a clear presentation of the methodological basis of these applications.  Because both the ESS XE "ESS"  and CI XE "CI"  fields are relatively new, in addition to presenting the NN XE "NN"  background in Chapter 2, the book presents basic ESS background for each application that is introduced.  For example, in Chapter 3 I discuss NN applications to satellite remote sensing and include a detailed introduction into forward and inverse problems in remote sensing; Chapter 4, which is devoted to NN applications in numerical climate XE "climate"  and weather XE "weather"  prediction, includes a brief introduction into numerical climate and weather modeling.  This feature makes the book self-descriptive.  The book presents a review of the field with the purpose of bringing the reader up-to-date on the state-of-the art.    It can also serve as a convenient source book for researchers, teachers and students who work in related fields.  
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