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Abstract 
A group of geophysical applications, which from the mathematical point of view can be 

formulated as complex, multidimensional, nonlinear mappings and which, in terms of the 

neural network (NN) technique, utilize a particular type of NN – the multilayer perceptron 

(MLP), is reviewed in this paper.  This type of NN applications covers the majority of NN 

applications developed in geosciences like satellite remote sensing, meteorology, 

oceanography, numerical weather prediction and climate studies.  The major properties of 

the mappings and MLP NNs are formulated and discussed.  Three particular groups of NN 

applications are presented in this paper as illustrations: atmospheric and oceanic satellite 

remote sensing applications; NN emulations of model physics for developing atmospheric 

and oceanic hybrid numerical models; and NN emulations of the dependencies between 

model variables for application in data assimilation systems.  
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1 Introduction  
The neural network (NN) approach is a relatively new, diverse, and powerful statistical 

learning technique (a.k.a. machine learning, learning from data, predictive learning, data 

driven approach) that started developing rapidly in the mid 80s after several major basic 

types of NNs were introduced in the works of Kohonen [1982], Hopfield [1982], Rumelhart 

et al. [1986], and Lippmann [1989].  In the 90s this technique matured; several well written 

and fundamental textbooks have been published [Beale and Jackson, 1990; Bishop, 1995; 

Haykin, 1994; Ripley, 1996; Vapnik, 1995; Cherkassky and Mulier, 1998] that introduced 

NNs as a new powerful statistical learning approach capable of providing a diverse family of 

flexible nonlinear data driven models for various applications.  This approach became 

appealing to a broad community of professionals including scientists working in different 

fields of geosciences like satellite remote sensing, meteorology, oceanography, geophysical 

numerical modeling, etc.  Since then a significant number of NN applications have been 

developed in these fields; the most important of them are summarized in Table 1.  

References presented there do not provide a complete list of the corresponding publications, 

or even the most important ones.  Rather, they give representative examples of publications 

devoted to the topic.  A number of these applications or groups of applications have already 

been reviewed in several review papers.  Selected atmospheric and oceanic applications 

have been reviewed for the atmospheric and oceanic community by Gardner and Dorling 

[1998] and by Hsieh and Tang [1998], and for the NN professionals by Krasnopolsky and 

Chevallier [2003] and Krasnopolsky and Fox-Rabinovitz [2006b].  Selected remote sensing 

applications have been reviewed for remote sensing experts by Atkinson and Tatnall [1997] 

and for NN community by Krasnopolsky and Schiller [2003].  Applications of the NN 
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technique for developing nonlinear generalizations of multivariate statistical analysis have 

been recently reviewed by Hsieh [2004].  Solomatin [2005] has reviewed hydrological NN 

applications.  

As can be seen from Table 1, a great variety of NN applications has been developed 

in different weather and climate related fields.  These applications utilize different types of 

NNs.  The task of selecting a group of such applications for reviewing may be approached 

from different directions.  Our goal in this paper is to be a tutorial rather than to give a 

complete description of geophysical NN applications.  We will leave out some particular 

interesting applications and try to concentrate on a clear presentation (where it is possible) 

of the methodological basis of the selected applications.  In this venue, we selected a group 

of geophysical applications for review in this paper, which from the mathematical point of 

view, can be formulated as complex, multidimensional, nonlinear mappings and which 

utilized a particular type of NN from the point of view of the NN technique – the multilayer 

perceptron (MLP) [Rumelhart et al. 1986].  This framework is broad and generic.  It covers 

the majority of applications developed in geosciences that can be considered as complex, 

multidimensional, nonlinear mappings and are partially presented in Table 1.  To focus this 

paper even more, we selected as particular examples only those applications which were 

developed with the author’s participation.  They are shown in italics in Table 1.  

  In the methodological Section 2, we introduce the concept and major properties of 

complex nonlinear mappings.  We also introduce the MLP NN as a generic technique for the 

nonlinear approximation of nonlinear continuous and almost continuous mappings.  Our 

theoretical understanding of complex multidimensional nonlinear mappings and highly 

nonlinear approximation methods (like the MLP NN) is still quite fragmentary [DeVore, 

Table 1 
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1998].  This is why the material we put together in Section 2 is a collection of theoretical 

results and practical inferences based on numerical experiments and experience from 

applications of MLP technique to various problems.  This tutorial material is valuable for 

understanding the entire topic and the following parts of this paper.  We would recommend 

to readers interested in a deeper understanding of the technique to return to Section 2 during 

and after reading the rest of this paper.  In Section 3, we discuss using NNs for remote 

sensing applications: emulating solutions of forward and inverse problems in satellite remote 

sensing.  In Section 4, we describe the use of NNs for creating accurate and fast NN 

emulations of model physics parameterizations in atmospheric, oceanic, and ocean wave 

models and for developing hybrid models by combining these NN components with 

deterministic (based on first (physical) principles) model components.  In Section 5, we 

introduce a NN application that allows the creation of NN emulations for the functions and 

mappings between model state variables hidden in the numerical outputs of modern high 

resolution atmospheric and oceanic numerical models.  There we also review NN ensemble 

approaches that allow improvement of the accuracy of NN emulations and reduce the 

uncertainties of NN Jacobians.  Section 6 contains conclusions. 

2 Mapping and Neural Networks Background 
A mapping, M, between two vectors X (input vector) and Y (output vector) can be 

symbolically written as,  

     mn YXXMY ℜ∈ℜ∈= ,);(                                                                  (1) 

A large number of important practical geophysical applications may be considered 

mathematically as a mapping like (1).  Keeping in mind that a NN technique will be used to 

approximate this mapping, we will call it a target mapping, using a common term from 
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nonlinear approximation theory [DeVore, 1998].  The target mapping may be given to us 

explicitly or implicitly.  It can be given explicitly as a set of equations based on first 

principles and/or empirical dependencies (e.g., radiative transfer or heat transfer equations) 

or as a computer code.  Observational records represent an implicit target mapping.  In this 

case, the target mapping is assumed to be hidden in, or behind observed data and to generate 

these data.         

2.1 Mapping Examples  
Prediction of a geophysical time series may be considered as a mapping between the past 

and future [Elsner and Tsonis, 1992].  In this case, the vector X = {xt-k, xt-k+1, …, xt} is a lag 

vector created from k past values of the time series for the variable X, and the vector Y = 

{xt+1, xt+2, …, xt+p} contains p future, predicted values of the same variable X.  The 

components of vectors X and Y in this example may be significantly correlated as sequential 

terms of the same time series that represents the sequential measurements of the same 

physical process.  Depending on the nature of the process represented by the time series, the 

target mapping M may be linear or nonlinear [Elsner and Tsonis, 1992].  Prediction of a 

time series as a mapping, and the use of NNs in this application, are discussed in great detail 

in Weigend and Gershenfeld [1994] and in other papers of this book.  

The second example of a generic application that can be formally considered as the 

mapping (1), is a retrieval algorithm (or a transfer function) in satellite remote sensing that 

converts the input vector X of satellite measurements (calibrated or raw radiances, brightness 

temperature, backscatter coefficients, etc., at different frequencies) into the vector Y of 

geophysical parameters like wind speeds, atmospheric moisture parameters, ocean and land 

surface characteristics, etc.  Here the components of vector X may again be correlated 
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because the frequency bands may not be completely independent and may overlap.  The 

components of the output vector Y may be correlated because the corresponding geophysical 

parameters are physically related [Krasnopolsky et al. 1999, 2000].  The target mapping in 

this example may also be a complicated nonlinear mapping.  This application is discussed in 

Section 3. 

The third example of an important application that can be considered as the mapping 

(1) is the parameterizations of atmospheric physics in climate or weather prediction 

numerical models.  The atmospheric long wave radiation (see Section 4 for details) can be 

considered as a mapping, where the input vector X is composed of several atmospheric state 

variables like temperature, humidity, ozone concentration, etc., that are functions of height, 

and some surface characteristics.  The output vector Y is composed of one function of height 

– long wave heating rates, and several heat fluxes.  It becomes clear from this brief 

description that in this case we do not have a vector to vector mapping (1), but a functional 

mapping because some of the components of the vectors X and Y are functions of a 

continuous variable – height.  Nevertheless, by discretization of these functions on a vertical 

grid that transforms continuous functions into profiles (finite vectors), the problem can be 

converted to a vector-to-vector mapping (1).  Also, in this example the components of the 

vectors X and Y can be significantly correlated because: (i) they are physically related, and 

(ii) they are related as the discretized values (elements of a profile) of the same continuous 

function at close height values.  The target mapping is also a complicated nonlinear one in 

this case because the atmospheric radiation processes are complicated nonlinear ones.  The 

target mapping may be continuous or almost continuous, that is, it may contain a finite 
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number of finite discontinuities (like step functions) due to the impact of highly nonlinear 

atmospheric moisture processes.  This application is discussed in Section 4.      

2.2 Some Generic Properties of Mappings. 
Multi-dimensional, nonlinear mappings (1) are complicated mathematical objects that are 

not very well studied.  There are many different interesting properties of these mappings that 

could be discussed.  However, after considering the three aforementioned examples, it will 

be easier for us to focus on some generic properties of the mapping (1) that are typical and 

important for the applications presented in this review, keeping in mind that our goal is to 

develop a NN emulation for the target mapping (1). 

2.2.1 Mapping dimensionalities, domain, and range  
The first essential property of the target mapping is its mapping dimensionalities.  A 

mapping is characterized by two dimensionalities: (i) dimensionality n of the input space 

nℜ , and (ii) dimensionality m of the output space mℜ .  The second property of the mapping 

(1) is the mapping domain.  If all components of the input vector X are scaled to [-1.,1.], 

the volume of the input space nℜ  is equal to 2n and, therefore, grows exponentially with n.  

Ones the space is discretized, e.g., by K values per dimension then the problem size grows 

even faster, as Kn.  This is usually called the curse of dimensionality [Bishop, 1995; Vapnik 

and Kotz, 2006].  Fortunately, the components of the input vector, X, are usually inter-

related or multi-collinear [Aires et al. 2004b] due to the physical or statistical reasons that 

leads to both positive and negative consequences (see Sections 2.3.4 and 2.4.2).  These 

correlations effectively reduce the size, and sometimes dimensionality, of the part of the 

input space nℜ  spanned by the input vectors X [Bishop, 1995].  This part is called the 

mapping domain, D, and is determined by a particular application.  Understanding the 
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configuration of the mapping domain and its properties is very important for a proper NN 

training and application.  The components of the output vector, Y, are usually also inter-

related.  As a result, the output vectors also span only a fraction of the output space mℜ .  

This part of the output space is called the range, R.  Understanding the properties of the 

range is very important for the proper testing and application of the developed NN 

approximations of a target mapping (1).   

2.2.2 Mapping complexity 
Another property of the mapping (1) that is important in the context of the applications 

reviewed in this paper is the mapping complexity.  Mapping complexity is an intuitively 

clear notion.  The mapping M performs some transformation of the input vector X to 

produce the output vector Y, and this transformation may be more or less complex.  

However, if we want to define complexity more precisely, we may face a lot of problems 

and ambiguities on both the qualitative and quantitative levels (for a good introductory 

review of the topic and the related problems see Reitsma [2001] and the references therein).  

Many different qualitative definitions (actually, more than 30 according to Reitsma [2001]) 

of the complexity have been introduced.  For some of these qualitative definitions, their 

measures (quantitative definitions of complexity) can be introduced [Colliers, 2000; Gell-

Mann and Lloyd, 1996].    

Keeping in mind those three examples of the mapping (1) we introduced above, we 

can suggest at least three different qualitative definitions of the mapping complexity.  In 

these applications, the target mapping M is a symbolic representation of a mathematical 

formalism based on first principles and describing a physical process or chain of interacting 

physical processes (e.g., atmospheric radiation).  Therefore, we can talk about the physical 
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complexity of the mapping (1) that corresponds to the complexity of the physical processes 

represented mathematically by this mapping.  Correspondingly, we can introduce 

quantitative or semi-quantitative characteristics of physical complexity: the number of 

equations describing the physics, the type of these equations (e.g., linear vs. nonlinear, ODE 

vs. PDE vs. integro-differential equations), the dimensionality of the equations, etc.  It is 

noteworthy that an ambiguity may exist for such measures of the physical complexity 

because alternative mathematical formalisms, based on first principles, often exist that lead 

to different types and numbers of equations for the description of the same physical system.  

As a result, several differing estimates of physical complexity may be obtained for the same 

target mapping (1).  As an example, Euler vs. Lagrange formulations of the equations of 

geophysical fluid dynamics can be pointed out. 

The second type of complexity that can be introduced is mapping numerical or 

computational complexity.  For this type of complexity a quantitative measure, like the 

number of elementary numerical operations required for calculating Y given X, can be 

introduced.  This measure is very important for it is closely related to the computation time.  

However, this measure is also ambiguous because, as we well know, different numerical 

schemes applied to the same set of equations (e.g., finite differences vs. variational methods 

for solving PDEs) may lead to dramatically differing counts of the elementary numerical 

operations.  Here again, several differing estimates of the numerical complexity may be 

obtained for the same mapping (1). 

The third definition of mapping complexity is the functional complexity.  It describes 

the complexity of the functional dependency of the outputs, Y, vs. inputs, X, or the 

“smoothness” of this dependency.  If the two previous definitions in some respects depend 
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on, or are conditioned by, our knowledge of the internal structure of the target mapping (1), 

this third definition characterizes the complexity of the mapping as a whole, as a 

single/elementary object that transforms the input vector into the output vector.  It is 

intuitively clear that the functional complexity of the mapping (1) can, in principle, be 

measured unambiguously.  Unfortunately, it does not mean that there actually exist technical 

tools that allow the introduction of a satisfactory measure of the functional complexity of a 

multidimensional mapping (1).  For example, for a function of one variable, an 

approximation procedure can be used for measuring functional complexity.  If n is the 

minimal order of a polynomial that approximates the function with the desired accuracy, the 

function may be considered to have polynomial complexity of the order n, etc.   The direct 

generalization of this approach for the case of a multidimensional mapping (1) is hardly 

possible.  However, a similar idea can be applied using universal mapping approximators 

like MLP NNs [Cilliers, 1998].  In other words, the complexity of the emulating NN can be 

used to measure the complexity of the target mapping (1) to be emulated by this NN.  This 

approach looks attractive; however, it requires a clear definition of the accurate emulating 

NN, which we discuss in Subsection 2.4.3.  It also provides us with a measure of the 

functional mapping complexity post factum, after the accurate NN approximation is 

performed; however, as we will show in the following sections, we often need an estimate of 

the functional mapping complexity beforehand to develop an accurate NN approximation.  It 

is noteworthy that the mapping dimensionalities n and m contribute to all three types of 

mapping complexity considered above; however, they can not be used as unambiguous 

measures of these complexities.   
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2.2.3 Mappings corresponding to ill-posed problems 
Among the applications considered in this review, we will find some problems that can be 

considered as continuous unique mappings (1); however, for these mappings small 

perturbations in X may cause large changes in Y.  The inverse mapping in this case may be 

discontinuous and the problem is then called ill-posed [Vapnik, 1995].  Ill-posed problems 

usually arise when one attempts to estimate an unknown cause from observed effects (most 

of the geophysical inverse problems belong to this class, e.g., the satellite retrieval problem 

considered in Section 3) or to restore a whole object from its low dimensional projection 

(e.g., estimating the NN Jacobian considered in Section 5.2).  If X contains even a low level 

of noise, the uncertainties in Y may be very large.  To solve ill-posed problems additional a 

priori information about the solution (regularization) should be introduced into the solution 

approach [Vapnik and Kotz, 2006].   

2.3 MLP NN – A Generic Tool for Modeling Nonlinear Mappings  

2.3.1 NNs in terms of approximation theory 
The simplest MLP NN, which in traditional NN terms corresponds to a MLP NN with one 

hidden layer and a linear output layer, is a generic analytical nonlinear approximation or 

model for mapping, like the target mapping (1).  The MLP NN uses for the approximation a 

family of functions like: 

 

                                                                                                             (2) 

 

                                                                                                                                         (3) 

where xi and yq are components of the input and output vectors respectively, a and b are 

fitting parameters or NN weights, and φ  is a so called activation or “squashing” function (a 
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nonlinear function, often a hyperbolic tangent), n and m are the numbers of inputs and 

outputs respectively, and k is the number of the highly nonlinear basis function zj (3) in the 

expansion (2).  The expansion (2) is a linear expansion (a linear combination of the basis 

function zj (3)) and the coefficients aqj (q = 1,…,m and j = 1,…,k) are linear coefficients in 

this expansion.  It is essential (see Subsection 2.4.1) that the basis functions zj (3) are 

nonlinear with respect to inputs xi (i=1,…,n) and to the fitting parameters or coefficients bji 

(j = 1,…,k).  As a result of the nonlinear dependence of the basis functions on multiple 

fitting parameters bji, the basis {zj}j=1,…,k turns into a very flexible set of non-orthogonal 

basis functions that have a great potential to adjust to the functional complexity of the 

mapping (1) to be approximated.  It has been shown by many authors in different contexts 

that the family of functions (2,3) can approximate any continuous or almost continuous 

(with a finite number of finite discontinuities, like a step function) mapping (1) [Cybenko, 

1989; Funahashi, 1989; Hornik, 1991; Chen and Chen, 1995a,b].   The accuracy of the NN 

approximation or the ability of the NN to resolve details of the target mapping (1) is 

proportional to the number of basis functions (hidden neurons) k [Attali and Pages, 1997].   

The MLP NN (2,3) itself is a particular type of the mapping (1).  In the case of the 

MLP NN, the computational and functional complexities of the NN mapping are closely 

related  and can be characterized by the number of fitting parameters a and b in (2,3) (they 

are especially close for NN emulations, see Section 2.4.3).  This number, the complexity of 

the MLP NN, is 

mmnkNc +++⋅= )1(                                                      (4) 
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For a set of NNs approximating a particular target mapping (1) with a given number of 

inputs n and outputs m, a good measure of the NN complexity is the number of hidden 

neurons k.  

2.3.2 NNs in traditional NN terms 
A pictographic language reminiscent of data flow chart is used traditionally in the NN field 

starting with the founding work by McCulloch and Pitts [1943].  In this work devoted to the 

mathematical modeling of a neuron, a single cell of a neural network, a basis function zj (3), 

or neuron was represented by a figure like Fig. 2.  Then after Rumelhart et al. [1986] 

introduced the MLP NN, a pictographic representation of the entire NN was introduced (see 

Fig. 1).  The neurons are situated into layers inside the MLP NN.  The connections (arrows) 

in Fig. 1 correspond to the NN weights, the name used for fitting parameters a and b in NN 

jargon.  For the simplest type of MLP NN that we consider here and that is sufficient for the 

approximation of any continuous and almost continuous mappings, there is a one to one 

correspondence between Eqs. (2,3) and Figs. 1 and 2.  However, in general, the pictographic 

language (Figs. 1 and 2) is not redundant.  This language can suggest NN topologies or 

architectures that probably cannot be represented analytically in terms of equations or that 

cannot evolve from Eqs. (2,3).  The pictograms that represent the design of such NNs cannot 

be described by a closed set of equations; however, these pictograms can be easily translated 

into computer codes.   

2.3.3 Training set 
In a practical application, a target mapping (1) is usually represented and presented to the 

NN by a data set (training set) that consists of N pairs or records of input and output vectors 

X and Y, 

Fig. 1 
Fig. 2 
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CT = {Xp,Yp}p=1,…,N                                                           (5) 

where Yp = M(Xp) + ξp, ξp is an error of observation or calculation with the probability 

density function ρ(ξ), and DX p ∈ and RYp ∈ .  The training set is all that the NN knows 

about the target mapping that it is supposed to approximate.  This is the reason why the 

MLP NN belongs to a class of data driven methods [Cherkassky and Mulier, 1998].   

The training set represents the mapping (1) to the NN and, therefore, it has to be 

representative.  It means that the training set has to have a sufficient complexity 

corresponding to the complexity of the target mapping, allowing the NN to obtain the 

desired accuracy for the approximation of the target mapping.  The set should have a 

sufficient number N of properly distributed data records that adequately resolve the 

functional complexity of the target mapping (1).  The set should have finer resolution where 

the target mapping is not very smooth and coarser resolution where it is smoother, namely, 

the domain D should be properly sampled.  It may be over-sampled but not under-sampled.  

The paramount question remains, however, as to just how we should measure this target 

mapping smoothness in order to obtain desired results [DeVore, 1998].  As we discussed 

above, the inter-relations between inputs simplify the sampling task for cases of high input 

dimensionality, reducing the size and the effective dimensionality of the domain.  

The representativeness of the training set is a necessary condition for a good NN 

generalization (interpolation).  Kon and Plaskota [2001] attempted to introduce a qualitative 

measure for the representativeness or necessary complexity of the training set.  They 

introduced informational complexity, that is, the number of observations necessary and 

sufficient to construct a NN approximation under accepted assumptions.  In an ideal 

situation it should be a correspondence between the functional complexity of the target 
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mapping (1), the complexity (4) of the approximating NN, and the informational complexity 

(number and distribution of data points) of the training set (5).  Unfortunately, there are no 

general recipes for practical real life applications.  The only practical, useful relationship 

that can be found in the literature is N > Nc.  Actually, this relationship has a simple 

statistical meaning; the number of unknown parameters in the model (the number of weights 

in NN or the complexity of NN (4)) should not exceed the number of data points, N, in the 

training set (5).   

Two major types of data are usually used in the geophysical applications considered 

here.   The first type of data is the observed data.  These data usually contain a significant 

level of observational noise ξ.  In the case of the ill-posed problem (see Sections 2.2.3 and 

3), even a small level of noise in the data may lead to significant errors in the NN 

emulations.  In the case of observed data, the sampling of the target mapping domain is 

controlled by the observation setup, technique, and conditions.  Actually, in this case the 

target mapping is represented implicitly by the data.  The accuracy of the NN approximation 

and the ability of the NN approximation to resolve the target mapping are limited by the 

observation setup, technique, and conditions.  There is usually little we can do to improve or 

expand the data set in this case except to fuse it with simulated (model produced) data if 

such data can be produced.  

If an explicit theoretical (based on first principles) or empirical model for the target 

mapping (1) is available, it can be used to simulate the data set (5).  With simulated data, we 

have significantly more control over the sampling of the target mapping domain (the number 

and distribution of the data points) and as a result, over the NN accuracy and the ability of 

the emulating NN to resolve the target mapping.  The level of noise in the simulated data is 
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usually lower than that in the observed data.  The simulated and observed data can, in 

principle, be fused together in an integrated data set using an appropriate technique that is 

able to account for the different error statistics and statistical properties of these two data 

types.  One example of fused data is the analyzed data produced by a data assimilation 

system. 

2.3.4 Selection of the NN architecture  
To approximate a particular target mapping (1) with the MLP NN (2,3), we should first 

select the NN architecture or topology, the number of the inputs n, the outputs m, and the 

number of neurons k in the hidden layer.  For each particular problem, n and m are 

determined by the input and output dimensionalities of the target mapping (the dimensions 

of the input and output vectors X and Y).  Here we treat an entire mapping (1) as an 

elementary/single object and approximate its functionality (an input-output relationship) as a 

whole.  Practical implementation of this approach allows for multiple solutions in terms of 

the number of NN designs that can be used for an approximation.  The MLP NN presented 

by Eqs. (2,3) can be implemented as a single NN with m outputs, m single-output NNs, or 

several multiple-output NNs with the total number of outputs equal to m.   

Approximating the target mapping with a single approximating NN is a convenient 

solution because of the simplicity of its design.  It also has a significant advantage in terms 

of speeding up the calculations when the outputs of the mapping and, therefore, the outputs 

of the approximating NN are significantly correlated.  In the case of a single NN (2,3) with 

many outputs, all the outputs are different linear combinations of the same basis functions zj, 

or hidden neurons.  Fewer neurons are required to approximate a particular number of 

correlated outputs than to approximate the same number of uncorrelated ones.  Thus, in the 
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case of correlated outputs one NN per approximation solution has a lower complexity Nc (4), 

and provides significantly higher performance at the same approximation accuracy than a 

battery of m single-output NNs [Krasnopolsky and Fox-Rabinovitz, 2006b]. 

 The possible choices among many topological solutions, from a single NN with m 

outputs to m single-output NNs, demonstrate an important flexibility of the NN technique 

that offers a speed vs. accuracy trade-off.  This additional flexibility can be effectively used 

for various applications.  Another degree of flexibility is provided by the availability of 

different normalizations for NN inputs and outputs.  This topic is discussed in detail by 

Krasnopolsky and Fox-Rabinovitz [2006b].   

The number of hidden neurons k, that determines the complexity (5) of the 

approximating NN in each particular case should be determined when taking into account 

the complexity of the target mapping to be approximated.  The more complicated the 

mapping, the more hidden neurons k are required [Attali and Pagès, 1997] (or the higher the 

required complexity Nc of the approximating NN) to approximate this mapping with the 

desired accuracy or resolution.  There is always a trade-off between the desired resolution of 

the target mapping and the complexity of the NN emulation.  However, from our experience 

the complexity k of the approximating NN should be carefully controlled and kept to the 

minimum level sufficient for the desired accuracy of the approximation to avoid overfitting 

and to allow for a smooth and accurate interpolation (see the discussion below in Section 

2.4).  Unfortunately, there are no universal rules or recommendations to be given here.  

Usually k is determined using experience and experiments.      



 21

2.3.5 NN training 
After these topological parameters are defined, the weights (a and b) can be found using the 

training set CT (5) and the maximum likelihood method [Vapnik, 1995] by maximizing the 

functional 
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with respect to free parameters (NN weights) a and b.  Here, ρ(ξ) is the probability density 

function for errors ξp (see Section 2.3.3).  If the errors ξp are normally distributed, Eq. (6) 

leads to the minimization of the least-square error, or loss , or risk, or cost function with 

respect to the NN weights a and b, 
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This procedure is usually called NN training.  It is noteworthy that for a probability density 

function ρ(ξ) other than the normal one, the error function should be derived from the 

maximum likelihood functional (6).  The error function may be significantly different than 

the least-square error or loss function (7).  However, in the majority of applications the least-

square error function (7) is applied.   

Optimal values for weights are obtained by minimizing the error function (6) or (7); 

this task is a nonlinear minimization problem.  A number of methods have been developed 

for solving this problem [Bishop, 1995; Haykin, 1994].  Here we briefly outline one of them, 

a simplified version of the steepest (or gradient) descent method known as the back-

propagation training algorithm [Rumelhart et al., 1986]. 

The back-propagation training algorithm is based on the simple idea that searching 

for a minimum of the error function (7) can be performed step by step in iterations, and that 
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at each step we should increment or decrement the weights in such a way as to decrease the 

error function.  This can be done using, for example, a simple steepest descent rule, 

 

    (8) 

where η is a so-called learning constant and W is either one of two weights (a or b).  Using 

(7) and (2,3), the derivative in (8) can be expressed analytically through the derivative of the 

activation function φ , and through the weight values at the previous iteration step.  At the 

first step when we do not have weights from a previous training iteration, a weight 

initialization problem arises that is familiar to those who use various kinds of iterative 

schemes.  Many publications have been devoted to weight initialization [e.g., Nguyen and 

Widrow, 1990; Wessels and Bernard, 1992].   

A nonlinear error function (7) has multiple local minima.  The back-propagation 

algorithm converges to a local minimum, as does almost any algorithm available for solving 

the nonlinear optimization problem (NN training).  Usually, multiple initialization 

procedures are applied to avoid shallow local minima and to choose a local minimum with a 

sufficiently small error.   

2.4 Advantages and Limitations of the NN Technique 
Here we attempt to summarize the advantages and limitations of the MLP NN technique as 

applied to the emulation of complex multidimensional mappings (1).  It is noteworthy that 

the majority of limitations we discuss here are not limitations on the MLP NN technique per 

se.  These limitations are inherent limitations on nonlinear models, nonlinear approximation 

techniques, and nonlinear statistical approaches [Cheng and Titterington, 1994] in general.  

Also, the same feature of the NN technique that gives this technique a significant advantage 
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under the normal circumstances is sometimes responsible for some of the limitations on the 

NN technique under special conditions.  We will proceed with the discussion while keeping 

these two points in mind. 

2.4.1 Flexibility of the MLP NN 
The MLP NN is a universal and very flexible approximator.  The great flexibility of the 

MLP NN is due to the fact that the basis function zj (hidden layer neurons) are adjustable.  

They contain many internal nonlinear parameters b that can be adjusted to the target 

mapping during training.  Barron [1993] showed that a linear combination of such 

adjustable basis functions can provide an accurate approximation with far fewer units than a 

linear combination of any fixed basis functions for certain classes of mappings where the 

number of inputs n ≥3.  Similar results were demonstrated in a different context by 

Krasnopolsky and Kukulin [1977].  This is a way for the MLP NN to escape the curse of 

dimensionality.  

 Another way to look at this important advantage of the adjustable basis zj, is to 

demonstrate the independence of the approximation error with respect to the dimensionality 

n of the input space.  In this case the approximation error, pk
E α≤ , where α > 0, p > 0 and p 

is independent of n.  In contrast, for approximations using fixed basis functions, the 

approximation error is 
nk

E 1
α≤  for the same class of mapping [Barron, 1993; Cheng and 

Titterington, 1994].  It means that for a fixed basis expansion when the number of inputs 

increases, one needs more and more basis functions (the number of basis functions or hidden 

neurons, k, has to increase) to achieve the same accuracy of approximation.  In other words, 
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for the MLP NN, it is the number of hidden neurons k and not the number of inputs n that 

determines the accuracy of the approximation.   

The basis functions zj are very flexible, non-orthogonal, and overlapping.  On the 

other hand, these useful properties may easily lead to non-optimality or redundancy in the 

NN architecture.  It means that some hidden neurons may contribute very little to the 

approximation and could be removed by pruning without a significant impact on 

approximation accuracy.  Pruning and other similar techniques [Bishop, 1995; Haykin, 

1994] have been developed to optimize the NN architecture and complexity.  The flexibility 

of the MLP NN technique, if not properly controlled, may lead to some unwanted 

consequences like overfitting (fitting noise in the data), unstable interpolation, and uncertain 

derivatives.  These limitations and the ways to control them will be discussed in this section.   

2.4.2 NN training as nonlinear optimization and multi-collinearity of 
inputs and outputs 

NN training, as described in Section 2.3.5, is an iterative procedure that does not involve any 

matrix inversion.  It is robust and insensitive to multi-collinearities in input and output data 

and always leads to a solution for the NN weights.  On the other hand, as a nonlinear 

optimization NN training always has multiple solutions that correspond to multiple local 

minima of the error or loss  function (7).  Multi-collinearities in input and output data lead to 

an equalization of local minima, especially in the case of a higher input dimensionality.  

Therefore, multi-collinearities in input and output data partly alleviate the problem of 

seeking the local minimum with the smallest error among multiple local minima.  From the 

point of view of the approximation problem, all these local minima give almost equally good 

solutions because the approximation errors for these minima are almost equally small.  On 

the other hand these local minima, which are almost equivalent in terms of the 
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approximation error, give different solutions in terms of NN weights.  These different NNs 

provide different interpolations and different derivatives.  Thus, because of the equalization 

of errors corresponding to different local minima the approximation error may be not 

instrumental without using additional criteria, for selecting solutions with good interpolation 

properties and derivatives.   

2.4.3 NN generalization ability: interpolation and extrapolation.  NN 
emulations. 

One of the vaguest terms in NN jargon is “generalization” or “generalization ability”.  This 

term came from traditional cognitive science applications and means a good performance of 

the trained NN on new inputs that were not included in the training set.  However, it is clear 

that there are at least two different cases of generalization.  First, when new inputs are 

located inside the domain, D, “between” the training data points.   Second, when new inputs 

are located beyond the area covered by the training set, namely close to or outside the 

boundary of the domain D.  The first case is an interpolation situation; the second case is an 

extrapolation one.   

It is well known that nonlinear extrapolation is an ill-posed problem and its solution may 

require regularization (introducing additional information) [Vapnik, 1995].  We will not 

discuss nonlinear extrapolation here.  However, even smooth interpolation is not guaranteed 

if the only criterion used for NN training is a small approximation error (7).  Moreover, 

multiple local minima with very close and small approximation errors may still lead to 

different interpolations.  If the NN complexity is not controlled, overfitting may occur that 

may lead to poor interpolation, e.g., significant oscillations in-between training data points.  

As mentioned above in Subsection 2.3.3, the representativeness of the training set is a 
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necessary condition for good interpolation.  Three additional measures are instrumental in 

improving the interpolation ability of the NN approximation:   

1. the NN complexity (the number k of hidden neurons) has to be controlled and 

restricted to a minimum level sufficient for good approximation;  

2. independent validation and test data sets should be used in the process of training to 

control overfitting (the validation set), and after the training to evaluate the 

interpolation accuracy (the test set); and  

3. a redundant training set (additional data points added “in-between” the training data 

points) is helpful for improving the NN interpolation abilities. 

In this paper we will call such an NN approximation – an emulating NN, NN 

emulation, or NN emulator.  NN emulation provides the functional emulation of the target 

mapping (1), including a small approximation error (7) for the training set (5) and a smooth 

and accurate interpolation between training set data points inside the domain D.  The 

correspondence between the emulating NN complexity and target mapping complexity is 

usually better than of an approximating NN with the same approximation error.  The 

complexity of an emulating NN is usually close to the minimal one; thus, the emulating NN 

is usually faster.  Usually it provides a better interpolation generalization, better resolution 

of the target mapping at the same approximation accuracy, and smaller uncertainties in the 

NN Jacobian. 

2.4.4 NN Jacobian 
The NN Jacobian, a matrix of the first derivatives of NN outputs over inputs, may be useful 

in many cases.  For example, in data assimilation applications a Jacobian is used to create an 

adjoint (a tangent-linear approximation) of the target mapping.  A Jacobian is also 
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instrumental in a statistical analysis (sensitivity, robustness, and error propagation analyses) 

and inversion of the target mapping and its NN emulation.  An inexpensive computation of 

the NN Jacobian by the analytical differentiation of (2,3) is one of the advantages of the NN 

approach.  However, the Jacobian is not trained; it is simply calculated through a direct 

differentiation of an emulating NN.  In this case the statistical inference of a Jacobian is an 

ill-posed problem, and it is not guaranteed that the derivatives will be sufficiently accurate.  

Moreover, the existence of multiple minima of the error function with very close 

approximation errors means that there exist multiple solutions for emulating NNs that have 

close approximation and interpolation errors but different Jacobians.   

As mentioned above in Section 2.4.3, if additional care is taken during the training, 

NN emulations can demonstrate good interpolation properties [Krasnopolsky and Fox-

Rabinovitz, 2006b].  This implies that, on average, the derivatives of these emulations are 

sufficiently accurate to provide a satisfactory interpolation.  However, for other applications, 

such the accuracy of a NN Jacobian may be not sufficient.  For those applications that 

require an explicit calculation of the NN Jacobian, several solutions have been offered and 

investigated: (i) the Jacobian (or the entire adjoint) can be trained as a separate additional 

NN [Krasnopolsky et al., 2002] (generation of a data set for training a Jacobian or adjoint is 

usually not a significant problem in those cases where simulated data are available); (ii) an 

ensemble approach can be applied that uses an ensemble of NN emulations with the same 

architecture corresponding to different local minima of the error function, or uses an 

ensemble of NN emulations with different numbers of hidden neurons (different 

complexities) to stabilize the NN Jacobian or to reduce the uncertainties of the NN Jacobian 

[Krasnopolsky, 2006], (see also Section 5.2.2 of this paper); (iii) the mean Jacobian can be 
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calculated over the data set and used [Chevallier and Mahfouf, 2001]; (iv) regularization 

techniques like “weight smoothing”  [Aires et al., 1999] or the technique based on a 

principle component decomposition [Aries et al., 2004b] can be used to stabilize the 

Jacobians; or (v) the Jacobian that is included in the training data set and as actual additional 

outputs in the NN can be trained, and the error or cost function which is minimized in the 

process of NN training can be modified to accommodate the Jacobian; in other words, the 

Euclidian norm, which is usually used for calculating the error function, should be changed 

to the first order Sobolev’s norm.  Actually, Hornik et al., [1990] showed that the function 

of Sobolev’s space can be approximated with all their derivatives.  This and other similar 

theoretical results are very important because they prove the existence of the approximation, 

however, they do not suggest explicit approaches.  Some explicit approaches have been 

developed by other authors [Cardaliaguet and Euvrard, 1992; Lee and Oh, 1997].    

With this change from Euclidian to Sobolev’s norm, the NN is trained to 

approximate not only the target mapping (as with the Euclidian norm) but also the 

mapping’s first derivatives.  This solution does not change the number of the NN outputs; 

however, it may require using more hidden neurons and may significantly complicate the 

minimization during training since the complexity of the error function increases.  This 

solution also requires the availability of an extended training set that includes first 

derivatives.  Finally, it should be mentioned that Jacobian modeling for large NNs still 

remains an open issue.  

2.4.5 Multiple NN emulations for the same target mapping and NN 
ensemble approaches 

The existence of multiple solutions is a property of nonlinear models and nonlinear 

approximations.  These models have many nonlinear parameters that could change in the 
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process of generating solutions.  These multiple solutions may be close in terms of a 

particular criterion used for obtaining the solutions.  At the same time these models (NNs) 

may be different in terms of other criteria that provide complementary information about the 

target mapping.  The availability of multiple solutions may lead to some inconveniences and 

uncertainties, e.g., the necessity of introducing an additional step to use additional criteria to 

select a single model.  On the other hand, the availability of multiple models (NN 

emulations) providing complementary information about the target mapping opens the 

opportunity to use an ensemble approach that allows integration of the complementary 

information contained in the ensemble members into an ensemble that “knows” more about 

the target mapping than does any of the ensemble members (particular NN emulations).   

The idea that an ensemble of learning models consisting of many members is capable 

of providing a better description of  the system than any particular member model can be 

traced back to as early as the late 1950’s and early-mid 1960’s [Selfridge, 1958; Nilsson, 

1965].  Since the early 1990's, many different algorithms based on similar ideas have been 

developed for NN ensembles [Hansen and Salamon, 1990; Sharkey, 1996; Naftaly et al., 

1997, Opitz and Maclin, 1999; Hsieh, 2001].   

An ensemble of NNs consists of a set of members, i.e., individually trained NNs.  

They are combined when applied to new data to improve the generalization (interpolation) 

ability because the previous research showed that an ensemble is often more accurate than 

any single ensemble member.  Different ways of combining NN ensemble members into the 

ensemble have been developed [Naftaly et al., 1997] (see Section 5.2).  Previous research 

also suggests that any mechanism that causes some randomness in the formation of NN 

members can be used to form a NN ensemble [Opitz and Maclin, 1999].  For example, 
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ensemble members can be created by training different members on different subsets of the 

training set [Opitz and Maclin, 1999], by training different members on different sub-

domains of the training domain, by training different members using NNs with different 

architectures (different numbers of hidden neurons) [Hashem, 1997], or by training different 

members using NNs with the same architecture but different initial conditions for the NN 

weights [Maclin and Shavlik, 1995; Hsieh, 2001].   

In the context of our application, an approximation of a complex mapping (1), the 

members of the ensemble are separately trained approximating NNs which provide different 

accuracies of approximation for the target mapping and different interpolation accuracies.  

We can expect that the ensemble average will provide a better approximation and 

interpolation than the individual members (see Section 5.2.1).  Krasnopolsky [2006] also 

applied the NN ensemble technique to reduce the uncertainty of the NN Jacobian (see 

Section 5.2.2).  Most previous work with NN ensembles have been done in the context of 

solving the classification [Hansen and Salamon, 1990; Sharkey, 1996; Opitz and Maclin, 

1999] or the prediction of time series problems [Naftaly et al., 1997, Hsieh, 2001].   

2.4.6 NN uncertainties estimates 
The NN technique is a nonlinear statistical approach.  As with any statistical approach, the 

NN technique is expected to provide not only the minimization of an error or loss function 

but also an estimate of the uncertainties in NN weights and outputs.  Because of the 

nonlinear nature of the NN technique, an estimation of the NN uncertainties is a more 

complicated problem than that in the case of linear statistical tools.  However, during the last 

decade progress has been made in this field in the cases of both the MLP NN with a single 

output [MacKay, 1992; Bishop, 1995; Neal, 1996; Nabney, 2002] and with multiple outputs 
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[Aires et al., 2004a].  Various Bayesian methods have been used in these studies for 

estimating the uncertainties of NN parameters (weights). 

2.5 Discussion 
In this section, we discussed general properties of the multidimensional complex mappings 

(1) and MLP NN (2,3) and also attempted to demonstrate relationships between their 

properties.  Both fields are young and are fast growing in terms of a developed theory and 

practical applications.  In this discussion, we tried to emphasize that a transition from linear 

statistical tools to nonlinear ones (like NNs) requires some adjustment in our methodological 

framework, which is sometimes not flexible enough to accommodate sophisticated nonlinear 

approaches.  Many of the advantages of nonlinear statistical approaches may turn into 

limitations under some special conditions.  Some of the limitations of nonlinear tools may be 

turned into advantages by using more flexible approaches, combining different statistical 

approaches (e.g., NNs and the ensemble approach), and using additional information. 

3 Atmospheric and Oceanic Remote Sensing 
Applications 

Estimating high quality geophysical parameters (information about the physical, chemical, 

and biological properties of the oceans, atmosphere, and land surface) from remote 

measurements (satellite, aircraft, etc.) is a very important problem in fields such as 

meteorology, oceanography, climatology and environmental modeling and prediction. Direct 

measurements of many parameters of interest, like vegetation moisture, phytoplankton 

concentrations in the ocean, and aerosol concentrations in the atmosphere are, in general, not 

available for the entire globe at the required spatial and temporal resolution.  Even when in 

situ measurements are available, they are usually sparse (especially over the oceans) and 
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located mainly at ground level or at the ocean surface.  Often such measurements can be 

estimated indirectly from the influence of these geophysical parameters on the 

electromagnetic radiation measured by a remote sensor.  Remote measurements allow us to 

obtain spatially dense measurements all over the globe at and above the level of the ground 

and ocean surface.  

The remote measurements themselves are usually very accurate.  The quality of 

geophysical parameters derived from these measurements varies significantly depending on 

the strength and uniqueness of the signal from the geophysical parameter and the 

mathematical methods applied to extract the parameter, i.e., to solve forward and/or inverse 

remote sensing (RS) problems.  The NN technique is a useful mathematical tool for solving 

the forward and inverse problems in RS accurately.  The number of NN RS applications has 

been increasing steadily over the last decade.  Examples of such applications follow.   

The NN technique was applied for the inversion of a multiple scattering model to 

estimate snow parameters from passive microwave measurements [Tsang et al., 1992].  

Smith [1993] used NNs for the inversion of a simple two-stream radiative transfer model to 

derive the leaf area index from Moderate Resolution Imaging Spectrometer data.  In other 

studies, NNs were applied to simulate scatterometer measurements and to retrieve wind 

speed and direction from these measurements [Thiria et al., 1993; Cornford et al., 2001]; to 

retrieve oceanic and atmospheric constituents from satellite ocean color sensor [Brajard et 

al., 2006]; to develop an inversion algorithm for radar scattering from vegetation canopies 

[Pierce et al., 1994]; to estimate atmospheric humidity profiles [Cabrera-Mercader and 

Staelin, 1995], atmospheric temperature, moisture, and ozone profiles [Aires et al., 2002] 

and atmospheric ozone profiles [Mueller et al., 2003].  Stogryn et al., [1994], and 
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Krasnopolsky et al., [1995] applied NNs to invert Special Sensor Microwave Imager 

(SSM/I) data and retrieve surface wind speed.  Davis et al., [1995] applied NNs to invert a 

forward model to estimate soil moisture, surface air temperature, and vegetation moisture 

from Scanning Multichannel Microwave Radiometer data.  Using a NN technique, a fast 

SSM/I forward model [Krasnopolsky, 1997] and SSM/I multi-parameter retrieval algorithm 

[Krasnopolsky, Breaker, and Gemmill, 1999, 2000; Meng et al., 2006] have been derived 

from empirical data (buoy SSM/I collocations).  Abdelgadir et al., [1998] applied NNs to the 

forward and inverse modeling of canopy directional reflectance.  Schiller and Doerffer 

[1999] used a NN technique for inverting a radiative transfer forward model to estimate the 

concentration of phytoplankton pigment from Medium Resolution Imaging Spectrometer 

(MERIS) data.  

3.1 Deriving Geophysical Parameters from Satellite 
Measurements: Standard Retrievals and Variational Retrievals 
Obtained Through Direct Assimilation 

Satellite sensors generate measurements like radiances, backscatter coefficients, brightness 

temperatures, etc.  The applications utilize usually geophysical parameters such as pressure, 

temperature, wind speed and direction, water vapor concentration, etc. derived from satellite 

data.  There exists an entire spectrum of different approaches in extracting geophysical 

information from the satellite measurements.  At one end of this spectrum ‘satellite only’ 

approaches are located; we will call them standard or traditional retrievals.  They use 

measurements performed by one particular sensor only, sometimes from different channels 

(frequencies, polarizations, etc.) of the same sensor to estimate geophysical parameters.  

Variational retrieval techniques or direct assimilation techniques are located at the other end 

of the spectrum.  They use an entire data assimilation system (DAS), including a numerical 
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weather prediction (NWP) model and analysis [Prigent et al., 1997], which in turn includes 

all kind of meteorological measurements (buoys, radiosondes, ships, aircrafts, etc.) as well 

as data from numerous satellite sensors.  Many approaches have been developed which 

belong to the intermediate part of this spectrum.  These approaches use measurements from 

several satellite sensors, combine satellite measurements with other kinds of measurements, 

and/or use background fields or profiles from NWP models for regularization of the inverse 

problem (retrievals) or for ambiguity removal, i.e., these approaches use some type of data 

fusion to regularize the solution of the inverse problem. 

3.1.1 Standard or conventional retrievals 
Conventional methods for using satellite data (standard retrievals) involve solving an inverse 

or retrieval problem and deriving a transfer function (TF) f , which relates a geophysical 

parameter of interest G (e.g., surface wind speed over the ocean, atmospheric moisture 

concentration, sea surface temperature (SST), etc.) to a satellite measurement S (e.g., 

brightness temperatures, radiances, reflection coefficients, etc.)  

G = f (S)      (9) 

where both G and S may be vectors.  The TF f, (also called a retrieval algorithm) usually 

cannot be derived directly from first principles because the relationship (9) does not 

correspond to a cause and effect principle and multiple values of G can sometimes 

correspond to a single S.  Forward models,  

S = F (G)          (10) 

where F is a forward model (FM), which relates a vector G to a vector S, can usually be 

derived from first principles and physical considerations (e.g., a radiative transfer theory) in 

accordance with cause and effect principles because geophysical parameters affect the 
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satellite measurements (but not vice versa).  Thus, the forward problem (10) is a well-posed 

problem in contrast to the inverse problem (9) which is often an ill-posed one [Parker, 

1994]; although, from a mathematical point of view, both FM (10) and TF (9) are 

continuous (or almost continuous) mappings between the two vectors S and G.  Even in the 

cases where the mapping (9) is not unique, this multi-valued mapping may be considered as 

a collection of single-valued continuous mappings.  In order to derive the TF (9), the FM 

(10) has to be inverted (an inverse problem has to be solved).  The inversion technique 

usually applied searches for a vector G0 which minimizes the functional [Stoffelen and 

Anderson, 1997]  

)(0 GFSS −=Δ       (11) 
 

where S0 is an actual vector of satellite measurements.  Since the FM F is usually a 

complicated nonlinear function, this approach leads to a full-scale nonlinear optimization 

with all its numerical problems, like a slow convergence, multiple solutions, etc.  This 

approach does not determine the TF explicitly; it assumes this function implicitly, and for 

each new measurement S0 the entire process has to be repeated.  A simplified linearization 

method to minimize the functional (11) can be applied if there is a good approximation for 

the solution of the inverse problem, that is, an approximate vector of the geophysical 

parameters G0.  Then the difference vector ΔS is small and there is a vector G in close 

proximity to G0 (|ΔG | = | G - G0 | is small) where ΔS(G) = 0.  Expanding F(G) in a Taylor 

series and keeping only those terms which are linear with respect to ΔG, we can obtain a 

system of linear equations to calculate the components of the vector ΔG [e.g., Wentz 1997], 
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where n is the dimension of vector G.  After ΔG is calculated, the next iteration of (12) with 

G0  = G0 + ΔG is performed.  The process is expected to converge quickly to the vector of 

retrievals G.  Again, in this case the TF (9) f is not determined explicitly but is only 

determined implicitly for the vector S0 by the solution of (12).  This type of retrieval can be 

called a “local” or “localized” linear inversion.  These techniques (11,12) are usually called 

physically based retrievals.  It is important to emphasize that the physically based algorithms 

(11,12) are by definition multi-parameter algorithms since they retrieve several geophysical 

parameters simultaneously (a complete vector G). 

Empirical algorithms are based on an approach which, from the beginning, assumes 

the existence of an explicit analytical representation for a TF, f.  A mathematical (statistical) 

model, fmod, is usually chosen (usually some kind of a regression), which contains a vector of 

empirical (or model) parameters a = {a1, a2, ... }, 

  Gk =  fmod (S,a)        (13) 

where these parameters are determined from an empirical (or simulated) matchup data set 

{Gk , S } collocated in space and time and use, for example, statistical techniques such as the 

method of least-squares.  This type of retrieval can be called a “global” inversion as it is not 

restricted to a given vector of satellite measurements.  The subscript k in Gk stresses the fact 

that the majority of empirical retrieval algorithms are single-parameter algorithms.  For 

example, for SSM/I there exist algorithms which retrieve only wind speed [Goodberlet et 

al., 1989], water vapor [Alishouse et al., 1990; Petty, 1993], or cloud liquid water [Weng 

and Grody, 1994].  Krasnopolsky et al., [1999, 2000a] showed that single-parameter 

algorithms have additional (compared to multi-parameter retrievals) systematic (bias) and 

random (unaccounted variance) errors in a single retrieved parameter Gk. 
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The obvious way to improve single-parameter retrievals (13) is to include other 

parameters in the retrieval process using an empirical multi-parameter approach, which as in 

the physically based multi-parameter approach (11,12), inverts the data in the complete 

space of the geophysical parameters [Krasnopolsky et al., 1999, 2000a].  Thus, the complete 

vector of the related geophysical parameters is retrieved simultaneously from a given vector 

of satellite measurements S, 

   G = fmod(S)      (14) 

where G = {Gi} is now a vector containing the primary, physically-related geophysical 

parameters, which contribute to the observed satellite measurements S.  These retrievals do 

not contain the additional systematic and random errors just described.  Because Eqs. (9), 

(10), (13), and (14) represent continuous mappings, the NN technique is well suited for 

emulating the FM, TF and empirical TF, fmod. 

Geophysical parameters derived using standard retrievals can be used for many 

applications, such as the NWP DASs.  In this case, a contribution to the variational analysis 

cost function χG from a particular retrieval, G0, is: 

    

  (15) 

where Go = f (So) is a vector of the retrieved geophysical parameter, So is a vector of the 

sensor measurements, G is a vector of the geophysical parameters being analyzed, O is the 

expected error covariance of the observations, and E is the expected error covariance of the 

retrieval algorithm.   
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3.1.2 Variational retrievals through the direct assimilation of satellite 
measurements. 

Because standard retrievals are based on the solution of an inverse problem which is usually 

mathematically ill-posed [Parker, 1994], this approach has some rather subtle properties and 

error characteristics [Eyre and Lorenc, 1989] which cause additional errors and problems in 

retrievals (e.g., an amplification of errors, ambiguities, etc.).  As a result, high-quality sensor 

measurements might be converted into lower-quality geophysical parameters.  This type of 

error can be avoided or reduced by using a variational retrieval technique (or an inversion) 

through direct assimilation of satellite measurements [Lorenc, 1986; Parrish and Derber, 

1992; Phalippou, 1996; Prigent et al., 1997; Derber and Wu, 1998; McNally et al., 2000]. 

Variational retrievals or direct assimilation of satellite data offer an alternative to 

deriving geophysical parameters from the satellite measurements.  They use the entire data 

assimilation system for the inversion (as a retrieval algorithm).  In this case, a contribution 

to the analysis cost function χS from a particular sensor measurement, S0, is: 

 

  (16) 

where  S = F (G), and F is a FM (10) which relates an analysis state vector G (or a vector of 

geophysical parameters in the analysis) to a vector of simulated sensor measurements S, O is 

the expected error covariance of the observations, and E is the expected error covariance of 

the forward model.  The forward problem (10) is a well-posed problem in contrast to the 

inverse problem (9).  However, a background term has to be added to (16) to prevent the 

data assimilation problem from being ill-posed [Parrish and Derber, 1992].  

)()()(
2
1 1 OTO

S SSEOSS −+−= −χ



 39

3.2 NNs for Emulating Forward Models 
FMs are usually complex due to the complexity of the physical processes which they 

describe and the complexity of the first principle formalism on which they are based (e.g., a 

radiative transfer theory).  Dependencies of satellite measurements on geophysical 

parameters, which FMs describe, are complicated and nonlinear.  These dependencies may 

exhibit different types of nonlinear behavior.  FMs are usually exploited in physically based 

retrieval algorithms where they are numerically inverted to retrieve geophysical parameters 

and in data assimilation systems where they are used for the direct assimilation of satellite 

measurements (variational retrievals).  Both numerical inversions and direct assimilation are 

iterative processes where FMs and their Jacobians are calculated many times for each 

satellite measurement.  Thus, the retrieval process becomes very time consuming, 

sometimes prohibitively expensive for operational (real time) applications.   

For such applications, it is essential to have fast and accurate versions of FMs.  

Because the functional complexity of FM mappings (see Section 2.2.2) is usually not as high 

as their physical complexity, NNs can provide fast and accurate emulations of FMs.  

Moreover, a NN can also provide an entire Jacobian matrix with only a small additional 

computational effort.  This is one NN application where the NN Jacobian should be 

carefully tested and controlled (see Section 2.4.4.). 

To develop a NN emulation for the FM, a training set which consists of matched pairs 

of vectors of geophysical parameters and satellite measurements, {G, S}i=1,…,N, has to be 

created.  If a physically based FM exists, it can be used to simulate the training set.  

Otherwise, empirical data can be used to create a training set.  
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3.3 NNs for Solving Inverse Problems: NNs Emulating Retrieval 
Algorithms 

NNs can be used in several different ways for retrieval algorithms.  In physically based 

retrieval algorithms a fast NN, emulating the complex and slow physically based FM and its 

Jacobian, can be used to speed up the local inversion process (12).   NNs can be used in 

many cases for a global inversion to explicitly invert a FM.  In such cases, after an inversion 

the NN provides an explicit retrieval algorithm (or TF), which is a solution of the inverse 

problem and can be used for retrievals.  To train a NN which emulates an explicit retrieval 

algorithm, a training set {G, S}i=1,…,N, is required.  As in the case of FMs, simulated or 

empirical data can be used to create the training set.   

A serious additional problem related to retrieval algorithms is the problem of 

regularizing the solution of the inverse problem.  To regularize an ill-posed inverse problem, 

additional (regularization) information should be introduced [Vapnik and Kotz, 2006].  The 

NN technique is flexible enough to accommodate regularization information as additional 

inputs and/or outputs and as additional regularization terms in the error or loss function.  For 

example, in their pioneering work on using NNs for the simultaneous retrieval of 

temperature, water vapor, and ozone atmospheric profiles [Aires., et al., 2002; Mueller, et 

al., 2003] from satellite measurements, the authors made good use of this NN flexibility by 

introducing the first guess from the atmospheric model or DAS as additional regularizing 

inputs in their NN based retrieval algorithms.    

3.4 Controlling the NN Generalization 
Well-constructed NNs (NN emulations) have good interpolation properties; however, they 

may produce unpredictable outputs when forced to extrapolate (see Section 2.4.3).  The NN 

training data (produced by a FM or constructed from empirical data collections) cover a 
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certain manifold DT (a sub-domain DT ⊆  D) in the full domain D.  Real data to be fed into 

the NN fNN, which emulates a TF (9), may not always lie in DT.  There are many sources for 

such deviations of real data from the low dimensional manifold DT of training data.  In order 

to recognize NN inputs not foreseen in the NN training phase and, thus, out of the scope of 

the inversion algorithm, a validity check [Schiller and Krasnopolsky, 2001] can be used.  

This check may serve as the basis for a quality control (QC) procedure.  Some kind of QC 

procedure is usually applied to the satellite retrievals in DAS.   

Let the model S = F(G) have an inverse G = f(S),  then, by definition S = F(f(S)).  

Further, let fNN be the NN emulating the inverse model in the domain DT.  The result of G0 = 

fNN(S0) for S0 ∉ DT may be arbitrary and, in general,  F(fNN(S0)) will not be equal to S0.  The 

validity of S = F(fNN(S)) is a necessary condition for S ∈ D.  Now, if in the application stage 

of the NN fNN, S is not in the domain ST, the NN fNN is forced to extrapolate.  In such a 

situation the validity condition may not be fulfilled, and the resulting G is in general 

meaningless.  For operational applications, it is necessary to report such events to the next 

higher evaluation level.  In order to perform the validity test, the FM must be applied after 

each inversion.  This requires a fast but accurate FM.  Such a FM can be achieved by 

developing a NN that accurately emulates the original FM, S = FNN(G).  Thus, the validity 

check algorithm consists of a combination of inverse and forward NNs that, in addition to 

the inversion, computes a quality measure for the inversion:  

δ = || S - FNN(fNN(S)) ||      (17) 

The solution to the problem of a scope check is obtained by estimating δ (17) where S is the 

result of the satellite measurement.  This procedure (i) allows the detection of situations 

where the forward model or/and transfer function is inappropriate, (ii) does an “in scope” 
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check for the retrieved parameters even if the domain has a complicated geometry, and (iii) 

can be adapted to all cases where a NN is used to emulate the inverse of an existing forward 

model.  For examples of applications of the scope check for quality control of retrievals and 

for development of intelligent NN based retrieval systems see [Krasnopolsky and Schiller, 

2003]. 

3.5 Neural Network Emulations for SSM/I Data 
In previous sections, we discussed the theoretical possibilities and premises for using NNs 

for modeling TFs and FMs.  In this section, we illustrate these theoretical considerations 

using real-life applications of the NN approach to the SSM/I forward and retrieval problems.  

SSM/I is a well-established instrument, flown since 1987.  Many different retrieval 

algorithms and several forward models have been developed for this sensor and several 

different databases are available for algorithm development and validation.  Various 

different techniques have been applied to the algorithm development.  Therefore, we can 

present an extensive comparison of different methods and approaches for this instrument.  A 

raw buoy-SSM/I matchup database created by the Navy was used for the NN algorithm 

development, validation, and comparison.  This database is quite representative, with the 

exception of high latitude and high wind speed events.  In order to improve this situation the 

data sets were enriched by adding matchup databases collected by the high latitude 

European ocean weather ships Mike and Lima to the Navy database.  Various filters have 

been applied to remove errors and noisy data (for a detailed discussion see Krasnopolsky 

[1997], and Krasnopolsky et al., [1999]).  The matchup databases for the F11 SSM/I have 

been used for training (about 3,500 matchups) and testing (about 3,500 matchups) our 

forward model and retrieval algorithm.  Then, more than 6,000 matchups for the F10 
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instrument were used for the validation.  The NN emulations were trained using all 

matchups that correspond to clear and cloudy weather conditions in accordance with the 

retrieval flags introduced by Stogryn et al., [1994].  Only those cases where the microwave 

radiation cannot penetrate the clouds were removed.     

3.5.1 NN emulation of the empirical FM for SSM/I 
The empirical SSM/I FM represents the relationship between the vector of geophysical 

parameters G and vector of satellite brightness temperatures (BTs) S, where S = {T19V, 

T19H, T22V, T37V, T37H} (TXXY means XX frequency in GHz and Y polarization), G= {W, 

V, L, Ts (or SST)}.  Four geophysical parameters are included in G (surface wind speed W, 

columnar water vapor V, columnar liquid water L, and SST).  These are the main parameters 

influencing BTs measured by satellite sensors, which were used as inputs in the physically 

based FMs of Petty and Katsaros [1992, 1994] (referenced to below as PK) and Wentz 

[1997] (see Table 2).  The NN emulation [Krasnopolsky, 1997], which implements this 

SSM/I FM has 4 inputs {W, V, L, SST}, one hidden layer with 12 neurons, and 5 nonlinear 

BT outputs {T19V, T19H, T22V, T37V, T37H}.  

 After NN FM was trained, it was validated and compared with PB forward models 

by Petty and Katsaros (PK) and Wentz [1997].  The RMS errors for NN FM are 

systematically better than those for the more sophisticated physically-based PK and Wentz 

FMs for all weather conditions and all channels considered (see Table 2).  

The NN FM is not as general as a radiative transfer model; it was developed to be 

applied to the data assimilation system for variational retrieval and direct assimilation of 

SSM/I BTs at particular frequencies from a particular instrument.  However, for this 

particular application (direct assimilation) and particular instrument it has a significant 

Table 2 
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advantage (it is significantly simpler and faster), especially in an operational environment.  

The NN FM simultaneously calculates the BTs and Jacobian matrix, which is required in the 

process of direct assimilation [Parrish and Derber, 1992; Phalippou, 1996].  This is one of 

the applications where the accuracy of the NN Jacobian is essential.  Krasnopolsky [1997] 

has demonstrated that for this particular application the NN Jacobian is sufficiently smooth 

and accurate.  In Section 5.2 a generic NN ensemble technique [Krasnopolsky, 2006] is 

discussed that improves the stability and reduces uncertainties of the NN emulation Jacobian 

if desired.  

3.5.2 NN empirical SSM/I retrieval algorithms 
The SSM/I wind speed retrieval problem is a perfect example illustrating the general 

discussion presented in Sections 3.1 and 3.3.  The problems encountered in the case of 

SSM/I wind speed retrievals are very representative, and the methods used to solve them can 

easily be generalized for other geophysical parameters and sensors.  About ten different 

SSM/I wind speed retrieval algorithms, both empirical and physically-based, have been 

developed using a large variety of approaches and methods.  Here these algorithms are 

compared in order to illustrate some advantages of the NN approach (for detailed discussion 

and comparison of algorithms see [Krasnopolsky et al., 1999] and [Krasnopolsky and 

Schiller, 2003]). 

Goodberlet et al., [1989] developed the first global SSM/I wind speed retrieval 

algorithm.  This algorithm is a single-parameter algorithm (it retrieves only wind speed) and 

is linear with respect to BTs (a linear multiple regression is used).  Statistics for this 

algorithm are shown in Table 3 under the abbreviation GSW.  Goodberlet and Swift [1992] 

(GS in Table 3) tried to improve the GSW algorithm performance under cloudy conditions, 
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using nonlinear regression with a rational type of nonlinearity.  Another nonlinear (with 

respect to BTs) version of the GSW single-parameter algorithm (called the GSWP algorithm 

here) introduced by Petty [1993] is based on a generalized linear regression.  

  Single-parameter NN algorithms have been introduced as an alternative to nonlinear 

and generalized linear regressions because the NN can model the nonlinear behavior of a TF 

better than these regressions.  Stogryn et al., [1994] developed the first NN SSM/I wind 

speed algorithm, which consists of two NNs, each with the surface wind speed as a single 

output.  One NN performs retrievals under clear and the other under cloudy conditions.  

Krasnopolsky et al., [1995] showed that a single NN with the same architecture (a single 

output) can generate retrievals for surface winds under both clear and cloudy conditions with 

the same accuracy as the two NNs developed by Stogryn et al. [1994].  Application of a 

single NN emulation led to a significant improvement in wind speed retrieval accuracy 

under clear conditions.  Under higher moisture/cloudy conditions, the improvement was 

even greater (25-30%) compared to the GSW algorithm.  The increase in areal coverage due 

to the improvements in accuracy was about 15% on average and higher in areas where there 

were significant weather events (higher levels of atmospheric moisture).  However, because 

this algorithm used for the training the data set that did not contain high wind speed events, 

it cannot generate acceptable wind speeds at ranges higher then 18 - 19 m/s. 

The next generation NN algorithm - a multi-parameter NN algorithm developed at 

NCEP (NN1 in Table 3) by Krasnopolsky et al., [1996, 1999] solved the high wind speed 

problem through three main advances.  First, a new buoy/SSM/I matchup database described 

above that contained wind speeds up to 26 m/s was used in the development of this 

algorithm.  Second, the NN training method was improved by enhancing the learning for the 

Table 3 
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high wind speed range.  Third, the variability of related atmospheric and surface parameters 

was taken into account; surface wind speed (W), columnar water vapor (V), columnar liquid 

water (L), and SST are all retrieved simultaneously.  In this case, the output vector of 

geophysical parameters is presented by G = {W, V, L, SST}.  The NN1 algorithm uses five 

SSM/I channels, including 19 GHz and 37 GHz for horizontal and vertical polarization and 

22 GHz for vertical polarization.   

Meng, et al., [2006] (NN2 in Table 3) use the NN multi-parameter retrieval approach 

developed by Krasnopolsky et al., [1996, 1999] to design another NN multi-parameter 

retrieval algorithm for SSM/I.  They use all 7 SSM/I BTs as inputs.  Their output vector also 

has four components G = {W, Ta, H, SST} where surface wind speed (W), surface air 

temperature (Ta), humidity (H), and SST are retrieved simultaneously.  In this case, the 

training database was limited by maximum wind speeds of about 20 m/sec.  Moreover, there 

were only a few higher speed events with W > 15 – 17 m/sec.   

Table 3 shows a comparison of the performance of all the aforementioned empirical 

algorithms in terms of the accuracy of the surface wind speed retievals.  It also shows 

statistics for a physically based algorithm developed by Wentz [1997], which is based on a 

linearized numerical inversion (12) of a physically based FM.  The statistics presented in 

Table 3 were calculated using independent buoy-SSM/I matchups.  Table 3 shows that the 

NN algorithms outperform all other algorithms.  All algorithms except the NN1 algorithms 

show a tendency to overestimate high wind speeds (see [Krasnopolsky et al., 1999, 2000a] 

for discussion).  NN1 shows the best total performance, in terms of bias, RMSE, and high 

wind speed performance.  
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Krasnopolsky et al., [1999, 2000a] have shown that the errors of multi-parameter NN 

algorithms have a weaker dependence on the related atmospheric and surface parameters 

than the errors of the single-parameter algorithms considered.  The retrieved SST in this case 

is not accurate (the RMS error is about 4°C, see Krasnopolsky et al., [1996]); however, 

including SST in the vector of retrieved parameters decreases the error in other retrievals 

correlated with the SST.  For the multi-parameter NN algorithm NN2 [Meng et al., 2006], 

the choice of the additional outputs surface air temperature (Ta) and humidity (H), that are 

closely and physically related and correlated with SST, makes the accuracy of the retrieved 

SST signal higher (the bias is about 0.1°C and RMS error 1.54°C).  In accordance with the 

classical, “linear” remote sensing paradigm, the SSM/I instrument does not have the 

frequency required to sense SST.  However, due to the nonlinear nature of the NN emulation 

and the proper choice of output parameters the multi-parameter NN algorithm is able to use 

weak nonlinear dependencies between NN inputs and outputs and between NN outputs to 

retrieve SST with a good accuracy.  

3.6 Discussion 
In this section we discussed a broad class of NN applications dealing with the solution of the 

RS forward and inverse problems.  Theoretical considerations presented here were 

illustrated using several real-life applications that exemplify a NN based intelligent integral 

approach where the entire retrieval system, including the quality control block 

[Krasnopolsky and Schiller, 2003], is designed from a combination of several specialized 

NNs.  This approach offers significant advantages in real life operational applications.  This 

intelligent retrieval system can produce not only accurate retrievals, but it also performs an 
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analysis and quality control of the retrievals and environmental conditions, rejecting any 

poor retrieval that occurs.    

The NN applications presented in this section illustrate the strengths and limits of the 

NN technique for inferring geophysical parameters from remote sensing measurements.  

NNs successfully compete with other statistical methods and usually perform better because 

they are able to emulate the functional relationship between inputs and the outputs in an 

optimal way.  NNs can successfully compete with even physically based approaches 

because, in many cases, explicit knowledge of very complicated physical processes in the 

environment is limited and a NN based empirical approach is more appropriate.  It can take 

into account more physics implicitly than a physically based approach would include 

explicitly.  However, the success of the NN approach strongly depends on the adequacy of 

the data set used for the NN training (see Section 2.3.3).  The data availability, precision, 

quality, representativeness, and amount are crucial for success in this type of NN 

application.  

4 Applications of NNs to Developing Hybrid Atmospheric 
and Oceanic Numerical Models 

The past several decades revealed a well pronounced trend in geosciences.  This trend 

marks a transition from investigating simpler linear or weakly nonlinear single-disciplinary 

systems like simplified atmospheric or oceanic systems that include a limited description of 

the physical processes, to studying complex nonlinear multidisciplinary systems like 

coupled atmospheric-oceanic climate systems that take into account atmospheric physics, 

chemistry, land-surface interactions, etc.  The most important property of a complex 

interdisciplinary system is that it consists of subsystems that, by themselves, are complex 

systems.  Accordingly, the scientific and practical significance of these interdisciplinary 
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complex geophysical/environmental numerical models has increased tremendously during 

the last few decades, due to improvements in their quality via developments in numerical 

modeling and computing capabilities.   

Traditional complex environmental numerical models (ENM) are deterministic 

models based on “first principle” equations.  For example, general circulation models 

(GCM) a.k.a. global climate models are numerical atmospheric and oceanic models for 

climate simulation and weather prediction that are based on solving time-dependent 3-D 

geophysical fluid dynamics equations on a sphere.  The governing equations of these 

models can be written symbolically as,  

 
  (18)  

where ψ  are 3-D prognostic or dependent variable or set of variables (e.g., temperature, 

wind, pressure, moisture); x is a 3-D independent variable (e.g., latitude, longitude, and 

pressure or height); D is the model dynamics (the set of 3-D partial differential equations of 

motion, thermodynamics, etc., approximated with a spectral or grid-point numerical 

scheme); and P is the model physics and chemistry (e.g., the long- and short-wave 

atmospheric radiation, turbulence, convection and large scale precipitation processes, 

clouds, interactions with land and ocean processes, etc., and the constituency transport, 

chemical reactions, etc., respectively).  These environmental models are either fully coupled 

atmosphere-ocean-land/biosphere-chemistry models or partially coupled models (e.g., with 

the chemistry component calculated off-line, driven by the flow simulated by an 

atmosphere-ocean-land model).  
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Another example of a complex ENM is an ocean wind wave model developed for 

simulation and forecast purposes [Tolman, 2002].  It is based on a form of the spectral 

energy or action balance equation 

swdsnlin SSSS
Dt
DF +++=

                                                         (19) 

where F is the spectrum,  Sin  is the input source term, Snl is the nonlinear wave-wave 

interaction source term, Sds is the dissipation or 'whitecapping' source term, and Ssw 

represents additional shallow water source terms.   

It is important to emphasize that the subsystems of a complex climate (or weather) 

system, such as physical, chemical, and other processes, are so complicated that it is 

currently possible to include them into GCMs only as 1-D (in the vertical direction) 

simplified or parameterized versions (a.k.a. parameterizations).  These parameterizations 

constitute the right hand side forcing for the dynamics equations (18,19).  Some of these 

parameterizations are still the most time consuming components of ENMs (see examples in 

the next subsection).  Thus the parameterizations have a very complicated internal structure, 

are formulated using relevant first principles and observational data, and are usually based 

on solving deterministic equations (like radiation equations) and some secondary empirical 

components based on traditional statistical techniques like regression.  Accordingly, for 

widely used state-of-the-art GCMs all major model components (subsystems) are 

predominantly deterministic; namely, not only model dynamics but the model physics and 

chemistry are also based on solving deterministic first principle physical or chemical 

equations. 

In this section, we discuss the concepts of hybrid parameterization (HP) and hybrid 

environmental models (HEM).  HEMs are based on a synergetic combination of 
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deterministic numerical modeling (first principle equations) with NN emulations of some 

model physics components.  We discuss the conceptual and practical possibilities of 

developing a hybrid GCM (HGCM) and HEM; namely, the possibility of combining 

accurate and fast NN emulations of model physics components with the deterministic model 

dynamics of a GCM or ENM, which are the types of complex environmental models used 

for modern atmospheric and ocean climate modeling and weather prediction.   

4.1 Concepts of a Hybrid Model Component and a Hybrid Model 
One of the main problems in the development and implementation of modern high-quality 

high-resolution environmental models is the complexity of the physical, chemical, and other 

processes involved.  Here we will discuss NN emulations for model physics, keeping in 

mind that the approach is applicable to other model components (chemical, hydrological and 

other processes) as well.  Parameterizations of model physics are approximate schemes, 

adjusted to model resolution and computer resources, and based on simplified physical 

process equations and empirical data and relationships.  The parameterizations are still so 

time-consuming, even for the most powerful modern supercomputers, that some of the 

parameterizations have to be calculated less frequently than the model dynamics.  Also, 

different physical parameterizations are calculated at different frequencies inversely 

proportional to their computational complexity.  This may negatively affect the accuracy of 

climate and other environmental simulations and predictions.   

For example, in the case of a complex GCM, calculation of a physics package 

(including the atmospheric and land physics) at typical (a few degrees) resolution as in the 

National Center for Atmospheric Research (NCAR) Community Atmospheric Model 

(CAM) takes about 70% of the total model computations.  This is despite the fact that while 
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the model dynamics is calculated every 20 minutes, some computationally expensive parts 

of the model physics (e.g., short wave radiation) are calculated every hour.  The most time 

consuming calculations of the model atmospheric physics, full long wave radiation 

including calculation of optical properties, are done only once every 12 hours while the 

heating rates and radiative fluxes are calculated every hour.  More frequent model physics 

calculations, desirable for temporal consistency with model dynamics, and the future 

introduction of more sophisticated model physics parameterizations will result in a further 

increase in the computational time spent calculating model physics. 

In the wind wave model (19), the calculation of the source term, Snl requires roughly 

103 to 104 times more computational effort than all other aspects of the wave model 

combined.  Present operational constraints require that the computational effort for the 

estimation of Snl should be of the same order of magnitude as for the remainder of the wave 

model.   

This situation is a generic and important motivation in looking for alternative, faster, 

and most importantly very accurate ways of calculating model physics, chemistry, 

hydrology and other processes.  During the last decade, a new statistical learning approach 

based on NN approximations or emulations was applied for the accurate and fast calculation 

of atmospheric radiative processes (e. g., Krasnopolsky, [1997] and Chevallier at al., 

[1998]) and for emulations of model physics parameterizations in ocean and atmospheric 

numerical models [Krasnopolsky et al., 2000b, 2002, 2005].  In these works, the calculation 

of model physics components has been accelerated by 10 to 105 times as compared to the 

time needed for calculating the corresponding original parameterizations of the model 

physics.   
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Approaches formulated by Chevallier at al., [1998, 2000] and Krasnopolsky et al., 

[2000b, 2002, 2005] represent two different ways of introducing a hybridization of first 

principle and NN components in the physics parameterizations as well as in complex ENMs.  

These approaches introduce hybridization at two different system levels, at the level of the 

subsystem (a single parameterization) and at the level of the entire system (ENM).  These 

two approaches lead to the concepts of a hybrid parameterization (HP) [Chevallier at al., 

1998, 2000] and a hybrid environmental model (HEM) or hybrid GCM (HGCM) 

[Krasnopolsky et al., 2000b, 2002, 2005a; Krasnopolsky and Fox-Rabinovitz, 2006a,b].  

These two concepts have been debated by Chevallier [2005] and Krasnopolsky et al. 

[2005c] and are discussed in the following subsections.  Another type of hybrid models – 

hybrid coupled model, where a simplified atmosphere is described by a neural network 

model and the ocean – by a dynamical model, was introduced and described by Tang and 

Hsieh (2003) and Li et al. (2005). 

4.2 Hybrid parameterizations of physics 
Chevallier et al., [1998, 2000] considered a component of the complex GCM (the ECMWF 

global atmospheric model) – the LWR parameterization.  Putting it in terms of the system 

levels, this single parameterization is considered to be the system and its constituents, with 

the blocks calculating fluxes, the blocks calculating cloudiness, etc., as the subsystems.  The 

hybridization of first principle components with NN emulations is introduced on the level of 

these constituents and inside the system, which in this case is the LWR parameterization.  A 

generic LWR parameterization can be represented as a mapping (1),    

     )(XMY =                                                                     (20) 
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in this particular case the input vector X = (S,T,V,C), where the vector S represents surface 

variables, T is a vector (profile) of atmospheric temperatures, C is a profile of cloud 

variables, and the vector V includes all other variables (humidity profile, different gas 

mixing ratio profiles, etc.).  The output of the LWR parameterization, vector Y, is composed 

of two vectors Q and f, Y = (Q,f).  Here Q is a profile of cooling rates Q = (Cr
1, Cr

2,…, Cr
L), 

where Cr
j is the cooling rate at the j-th vertical model level, and f is a vector of auxiliary 

fluxes computed by the LWR parameterization.  Because of the presence of the cloud 

variable C, the mapping (20) may have some finite discontinuities, that is, it is almost 

continuous.  The ECMWF LWR parameterization considered by Chevallier et al., [1998, 

2000] is based on the Washington and Williamson [1977] approach which allows to separate 

cloud variables C.  In this parameterization, level fluxes are calculated as, 

∑=
i

ii VTSFCCVTSF ),,()(),,,( α
                                                     (21) 

where i is an index for the vertical level, each partial or individual flux Fi(S,T,V) is a 

continuous mapping and all discontinuities related to the cloudiness are included in αi(C).  In 

their hybrid parameterization “NeuroFlux”, Chevallier et al., [1998, 2000] combined 

calculations of cloudiness functions αi(C) based on first principle equations with NN 

approximations for a partial or individual flux Fi(S,T,V).  Thus, the flux at each level (21) is 

a linear combination of approximating NNs and cloud physics coefficients αi(C).  As the 

result, the “NeuroFlux” hybrid LWR parameterization developed by Chevallier et al., [1998, 

2000] is a battery of about 40 NNs.  To calculate “NeuroFlux” outputs, namely the cooling 

rates Crs, linear combinations of the individual approximating NNs F (eq. 21) are 

differentiated at each vertical level,     
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( )( )r
F PC P

P
∂=
∂   ,                                                                    (22) 

where P is atmospheric pressure. 

The “NeuroFlux” has a very good accuracy; its bias is about 0.05 K/day and RMS 

error is about 0.1 K/day compared to the LWR parameterization by Washington and 

Williamson [1977].  It is eight times faster than the parameterization by Washington and 

Williamson [1977].  This HP approach has already led to the successful operational 

implementation of “NeuroFlux” in the ECMWF 4-DVar data assimilation system. 

As for limitations of the HP approach, the main one stems from a basic feature of the 

HP approach; it is based on the analysis of the internal structure of a particular 

parameterization.  The final design of HP is based on and follows this internal structure.  

Because all parameterizations have different internal structures, the approach and design of a 

HP developed for one parameterization usually cannot be used, without significant 

modifications, for another parameterization.  For example, the approach used by Chevallier 

et al., [1998, 2000] and the design of the HP “NeuroFlux” is completely based on the 

possibility of separating the dependence on the cloudiness (see eq. 21).  Many other LWR 

parameterizations, like the NCAR CAM LWR parameterization [Collins, 2001; Collins et 

al., 2002] or the LWR parameterization developed by Chou et al., [2001], do not allow for 

such separation of variables.  Thus, for these LWR parameterizations as well as the short 

wave radiation (SWR) and the moisture model physics block parameterizations, the HP 

approach developed by Chevallier et al., [1998, 2000] cannot be applied directly; it should 

be significantly modified or redesigned for each particular new parameterization. 
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4.3 Hybrid Numerical Models: Accurate and Fast NN Emulations 
for Parameterizations of Model Physics 

A new concept of a complex hybrid environmental model (HEM) has been formulated and 

developed by Krasnopolsky et al., [2000b, 2002, 2005a] and by Krasnopolsky and Fox-

Rabinovitz [2006a,b].  The hybrid modeling approach considers the whole GCM or ENM as 

a system.  Dynamics and parameterizations of physics, chemistry, etc., are considered to be 

the components of the system.  Hybridization in this case is introduced at the level of 

components inside the system (ENM).  For example, the entire LWR (or SWR) 

parameterization is emulated by a single NN as a single/elementary object or block.  The 

NN emulation approach is based on the general fact that any parameterization of model 

physics can be considered as a continuous or almost continuous mapping (1, 20) (see 

Sections 2 and Subsection 4.2). 

Here we use the NCAR CAM (see J. Climate [1998] for the description of the 

model), a widely recognized state-of-the-art GCM used by a large modeling community for 

climate predictions, and the state-of-the-art NCEP wind wave model [Tolman, 2002] as 

examples of a complex GCM and ENM.  After applying the hybridization approach to the 

first principle based components of these models by developing NN emulations of model 

physics parameterizations, these models become the examples of an HGCM and HEM, 

correspondingly.       

Krasnopolsky and Fox-Rabinovitz [2006a,b] formulated a developmental framework and 

test criteria that can be recommended for developing and testing the statistical learning 

components of HGCM, i.e., NN emulations of model physics components.  The 

developmental process consists of three major steps:   



 57

1. Problem analysis or analysis of the model component (target mapping (1); i.e., the 

original parameterization) to be approximated to determine the optimal structure and 

configuration of the NN emulations - the number of inputs and outputs and the first 

guess of the functional complexity of the original parameterization that determines 

an initial number of hidden neurons in one hidden layer of (2,3) (see Sections 2.2.2, 

2.3.1, and 2.3.4.).  

2. Generation of representative data sets for training, validation, and testing.  This is 

achieved by using data for NN training that are simulated by running an original 

GCM, i.e., a GCM with the original parameterization.  When creating a 

representative data set, the original GCM must be run long enough to produce all 

possible atmospheric model simulated states, phenomena, etc.  Here, due to the use 

of simulated data, it is not a problem to generate the sufficiently representative (and 

even redundant) data sets required to create high quality NN emulations (see Section 

2.4.3).  Using model-simulated data for NN training allows a high accuracy of 

emulation to be achieved because simulated data are almost free of the problems 

typical in empirical data (like a high level of observational noise, sparse spatial and 

temporal coverage, poor representation of extreme events, etc.). 

3. Training the NN.  Several different versions of NNs with different architectures, 

initialization, and training algorithms should be trained and validated.  As for the NN 

architecture, the number of hidden neurons k should be kept to the minimum number 

that provides a sufficient emulation accuracy to create the high quality NN 

emulations required (see Section 2.4.3). 
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Testing the HGCM that uses the trained NN emulation consists of two major steps.  The 

first step is testing the accuracy of the NN approximation against the original 

parameterization using the independent test data set.  In the context of the hybrid approach, 

the accuracy and improved computational performance of NN emulations, and eventually 

the HGCM is always measured against the corresponding controls, namely the original 

parameterization and its original GCM.  Both the original parameterization and its NN 

emulation are complicated multidimensional mappings.  Many different statistical metrics of 

the emulation accuracy should be calculated to assure that a sufficiently complete evaluation 

of the emulation accuracy is obtained.  For example, total, level, and profile statistics have to 

be evaluated (see Section 4.4).  The second test step consists of a comprehensive 

comparison and analysis of parallel HGCM and GCM runs.  For the parallel model 

simulations all relevant model prognostic (i.e., time-dependent model variables) and 

diagnostic fields should be analyzed and carefully compared to assure that the integrity of 

the original GCM and its parameterization, with all its details and characteristic features, is 

precisely preserved when using a HGCM with NN emulation (see Section 4.4).  This test 

step involving model simulations is crucially important.  GCMs are essentially nonlinear 

complex systems; in such systems, small systematic, and even random approximation errors 

can accumulate over time and produce a significant impact on the quality of the model 

results.   Therefore, the development and application framework of the new hybrid approach 

should be focused on obtaining a high accuracy in both NN emulations and HGCM 

simulations.  



 59

4.4 Atmospheric Applications: NN Emulation Components and 
HGCM 

4.4.1 Models and Statistical Metrics 
The NCAR CAM and NASA NSIPP (Natural Seasonal-to-Interannual Predictability 

Program) GCM are used in this section as examples of GCMs.  The NCAR CAM is a 

spectral model that has 42 spectral components (or approximately 3° – 3.5° horizontal 

resolution) and 26 vertical levels.  The NSIPP model is a grid point GCM that has 2° × 2.5° 

latitude × longitude horizontal resolution and 40 vertical levels. NN emulations were 

developed for the two most time consuming components of model physics, the long wave 

radiation (LWR) and short wave radiation (SWR).  The NCAR and NSIPP models have 

different LWR and SWR parameterizations.  The complete description of the NCAR CAM 

atmospheric LWR is presented by Collins [2001] and Collins et al., [2002], and the NSIPP 

LWR by Chou et al., [2001].  The full model radiation (or total LWR and SWR) calculations 

take ~70% of the total model physics calculations.   

The NN emulations developed were tested against the original NCAR CAM LWR 

and SWR parameterizations.  The following statistics and statistical cross-sections were 

calculated to evaluate the accuracies of the NN emulations.  The mean difference B (bias or 

systematic error of approximation) and the root mean square difference RMSE (a root mean 

square error of approximation) between the original parameterization and its NN emulation 

are calculated as follows: 
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where Y(i,j) and YNN(i,j) are outputs from the original parameterization and its NN 

emulation, respectively, where i = (latitude, longitude), i=1,…, N  is the horizontal location 

of a vertical profile; N is the number of horizontal grid points; and j = 1,…, L is the vertical 

index where L is the number of the vertical levels.      

These two error characteristics (Eqs. (23)) describe the accuracy of the NN 

emulation integrated over the entire 4-D (latitude, longitude, height, and time) data set.  

Using a minor modification of Eqs. (23), the bias and RMSE for the mth vertical level of the 

model can be calculated: 
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The root mean square error can also be calculated for each ith profile: 
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This error is a function of the horizontal location of the profile.  It can be used to calculate a 

mean profile root mean square error PRMSE and its standard deviation σPRMSE which are 

location independent: 
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The statistics (26) and (23) both describe the accuracy of the NN emulation integrated over 

the entire 4-D data set.  However, because of a different order of integration it reveals 
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different and complementary information about the accuracy of the NN emulations.  The 

root mean square error profile can be calculated as: 
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4.4.2 Emulating the Model Radiation  
The function of the LWR parameterization in atmospheric GCMs is to calculate the heating 

fluxes and rates produced by LWR processes.  As was already mentioned, the entire LWR 

parameterization can be represented as an almost continuous mapping (Eq. 20).  Here a very 

general and schematic outline of the internal structure of this parameterization is given in 

order to illustrate the complexity that makes it a computational “bottleneck” in the NCAR 

CAM physics.  This information about the internal structure of the LWR parameterization 

was not used when creating the LWR NN emulation.   

The method for calculating LWR in the NCAR CAM is based on LW radiative 

transfer equations in an absorptivity/emissivity formulation (see Collins [2001] and 

references there), 
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where  )( pF ↑ and )( pF ↓  are the upward and the downward heat fluxes, )()( 4 pTpB ⋅= σ  

is the Stefan-Boltzmann relation; pressures ps and pt refer to the top and surface atmospheric 

pressures, and α and ε are the atmospheric absorptivity and emissivity.  To solve the integral 

equations (28), the absorptivity and emissivity have to be calculated by solving the 

following integro-differential equations, 
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where the integration is over wave number ν, and B(pt) is the Planck function.  To solve Eqs. 

(29) for the absorptivity and emissivity, additional calculations have to be performed  and 

the atmospheric transmission τν has to be calculated.  This calculation involves a time 

consuming integration over the entire spectral range of gas absorption.  Eqs. (28,29) 

illustrate the complexity of the LWR internal structure and explain the poor computational 

performance of the original NCAR CAM LWR parameterization, which in this case is 

determined by the mathematical complexity (see Section 2.2.2) of the original LWR 

parameterization.   

The input vectors for the NCAR CAM LWR parameterization include ten vertical 

profiles (atmospheric temperature, humidity, ozone, CO2, N2O, CH4, two CFC mixing ratios 

(the annual mean atmospheric mole fractions for halocarbons), pressure, and cloudiness) and 

one relevant surface characteristic (upward LWR flux at the surface).  The CAM LWR 

parameterization output vectors consist of the vertical profile of heating rates (HRs) and 

several radiation fluxes, including the outgoing LWR flux from the top layer of the model 

atmosphere (the outgoing LWR or OLR).  The NN emulation of the NCAR CAM LWR 

parameterization has the same number of inputs (220 total) and outputs (33 total) as the 

original NCAR CAM LWR parameterization.   

NCAR CAM was run for two years to generate representative data sets.  The first 

year of the model simulation was divided into two independent parts, each containing 
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input/output vector combinations.  The first part was used for training and the second for 

validation (control of overfitting, control of a NN architecture, etc.).  The second year of the 

simulation was used to create a test data set completely independent from both the training 

and validation sets.  This data set was used for testing only.  All approximation statistics 

presented in this section were calculated using this independent test data set. 

Several NNs have been developed that all have one hidden layer with 20 to 300 

neurons.  Varying the number of hidden neurons allows one to demonstrate the dependence 

of the accuracy of NN emulation on this parameter, which is actually the complexity of the 

NN emulation, as well as selecting an optimal NN emulation [Krasnopolsky et al., 2005a] 

with the minimal complexity (see Section 2.4.3) that still provides an emulation accuracy 

sufficient for a successful multi-decadal climate model integration. 

All NN emulations [Krasnopolsky et al., 2005a, Krasnopolsky and Fox-Rabinovitz, 

2006a,b] developed for the NCAR CAM LWR and SWR have almost zero or negligible 

systematic errors (biases).  Fig. 3 illustrates convergences of root mean square errors (23, 

24, and 26) that are random errors in the case of negligible biases.  The figure shows that an 

error convergence has been reached when the number of hidden neurons k ≈ 100.  However, 

the convergence becomes slow and non-monotonic at k ≈ 50.  The final decision about the 

optimal NN emulation (in terms of sufficient accuracy and minimal complexity) to be 

implemented into the model is based on decadal integrations using the NN emulations 

within HGCM.   

The NN emulation with k = 50 (NN50) is the simplest NN emulation that could be 

integrated into the model for decadal (40 years or longer) climate simulations without any 

visible (significant) accumulations of errors in climate simulations, compared to the control 

Fig. 3 
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run with the original LWR parameterization.  This is the main indicator (in the framework of 

the NN application) that the accuracy of the NN emulation is sufficient for this application.  

Fig. 4 shows the vertical error profile (27) rmsep(j) for the “optimal” NN emulation with 50 

hidden neurons, NN50 (solid line).  It shows that the errors are very small; at the top 10 

levels the error does not exceed 0.2 K/day, at the top 20 levels it does not exceed 0.3 K/day 

and reaches just about 0.6 - 0.8 K/day at the lowest level, which does not lead to significant 

errors in the 40 year climate simulations with HGCM.  In addition to having sufficient 

emulation accuracy, the NN50 NN emulation performs about 150 times faster than the 

original NCAR CAM LWR parameterization in a code by code comparison. 

For assessing the impact of using an NN emulation of the LWR parameterization in 

the HGCM, parallel climate simulation runs were performed with the original GCM (NCAR 

CAM including the original LWR parameterization) as the control run and with the HGCM 

(NCAR CAM including the NN emulations of LWR described above).  The climate 

simulations were run for 50 years.  As is usually done in climate simulations the simulated 

fields for the first 10 years, that potentially include the climate model spin-up effects, are not 

used for the analysis of the simulation results, leaving the remaining 40 year period to be 

used for that purpose[Krasnopolsky et al., 2005, Krasnopolsky and Fox-Rabinovitz, 

2006a,b].  Comparisons between the control and NN emulation runs are presented in Table 4 

(rows 2, 3, and 4).  They are done by analyzing the time (40-year) and global mean 

differences between the results of the parallel runs, as is routinely done in climate modeling.  

In the climate simulations performed with the original GCM and with HGCM, the time and 

global mean mass or mean surface pressure are precisely preserved, which is the most 

important preservation property for climate simulations.  For the NN50 run, there is no 

Fig. 4 
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difference in mean sea surface pressure between the NN and control runs (see Table 4).  

Other time global means, some of which are also presented in Table 4, show a profound 

similarity between the parallel simulations for these terms.  These very small differences 

indicate the very close results from the parallel climate simulations.  Other simulations (with 

NN90, NN150, NN200, etc.) also show that the HGCM results are profoundly similar to 

those of the original GCM [Krasnopolsky et al., 2005a, Krasnopolsky and Fox-Rabinovitz, 

2006a,b].  It is noteworthy that the differences between these parallel runs (HGCM and 

GCM) do not exceed the differences seen in two identical GCM runs performed on different 

supercomputers.    

The robustness of the NN emulation approach was investigated using another GCM.  

The NASA NSIPP GCM (with a different LWR parameterization and other different model 

components compared to the NCAR CAM and its LWR parameterization) was used for this 

purpose.  The NN emulation accuracy and complexity results in this case [Krasnopolsky et 

al.,, 2005b; Krasnopolsky and Fox-Rabinovitz, 2006a,b] are very similar to the ones 

presented above for NCAR CAM.  This illustrates the robustness of the NN emulation 

approach.   

The second component of atmospheric radiation is short wave radiation (SWR).  

LWR and SWR together comprise the total atmospheric radiation.  The function of the SWR 

parameterization in atmospheric GCMs is to calculate the heating fluxes and rates produced 

by SWR processes.  A description of the NCAR CAM atmospheric SWR parameterization 

is presented in a special issue of Journal of Climate [1998].  The input vectors for the 

NCAR CAM SWR parameterization include twenty-one vertical profiles (specific humidity, 

ozone concentration, pressure, cloudiness, aerosol mass mixing ratios, etc.) and several 

Table 4 
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relevant surface characteristics.  NN emulations for the CAM-2 and CAM-3 versions of 

NCAR CAM SWR parameterizations have been developed [Krasnopolsky and Fox-

Rabinovitz, 2006a,b].  The major difference between the CAM-2 and CAM-3 SWR versions 

is that CAM-3 uses significantly more information about aerosols.  This extended aerosol 

information is responsible for a substantial increase in the number of inputs into the CAM-3 

SWR parameterization as compared with CAM-2.  The CAM SWR parameterization output 

vectors consist of a vertical profile of heating rates (HRs) and several radiation fluxes.  

The data sets for training, validating, and testing SWR emulating NNs were 

generated in the same way as those for the LWR NN emulations described above.  SWR NN 

emulations were tested against the original NCAR CAM SWR parameterizations using the 

independent test set.       

The NN emulations of NCAR CAM-2 and CAM-3 SWR parameterizations have 173 

and 451 inputs, respectively, and 33 outputs, which are the same numbers as the inputs and 

outputs for the original NCAR CAM-2 and CAM-3 SWR parameterizations.  As in the case 

of the LWR parameterizations, several NNs were developed that all have one hidden layer 

with 20 to 300 neurons.  The NN emulation with k = 55 (NN55) is the simplest NN 

emulation that satisfies the sufficient accuracy criterion; it could be integrated in the HGCM 

for multi-decadal simulations without visible (significant) accumulations of errors in climate 

simulations as compared to the control run with the original SWR parameterization.  Fig. 4 

shows the vertical error profile (27) rmsep(j) for the “optimal” NN emulation NN55 (dashed 

line).  It shows that the errors are very small, even smaller than for the LWR NN emulation.  

In addition to sufficient emulation accuracy, the NN55 SWR NN emulation performs about 
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20 times faster than the original NCAR CAM SWR parameterization in a code by code 

comparison. 

Comparisons between the control and NN emulation SWR runs are presented in 

rows 5 and 6 of Table 4 (see the Table 4 explanation in the text above).  The HGCM results 

are profoundly similar to those of the original GCM [Krasnopolsky and Fox-Rabinovitz, 

2006a,b].  

The next logical step is to combine two NN emulations (LWR and SWR) to emulate 

the total model radiation.   The NN50 LWR emulation and NN55 SWR emulation described 

above were combined together in one HGCM.  This HGCM with the NN emulations of the 

total model radiation was integrated for 40 years and the results of the climate simulation 

were compared with those of the NCAR CAM-2 GCM simulation control run with the 

original NCAR CAM LWR and SWR parameterizations.  Comparisons are presented in 

rows 7 and 8 of Table 4 (see the Table 4 explanation in the text above).  For the total 

radiation, the differences between HGCM and GCM runs are as small as for two previous 

cases (see Table 4).  This demonstrates that using several NN emulations with negligible 

systematic errors (biases) in one HGCM does not lead to an increase of the differences 

between this HGCM and the original GCM.    

4.5 Ocean Application of the Hybrid Model Approach: Neural 
Network Emulation of Nonlinear Interactions in Wind Wave 
Models 

The ocean wind wave model used for simulation and forecast purposes is another example 

of an ENM.  It is based on a form of the spectral energy or action balance equation (19) for 

the two dimensional spectrum, F, and has the nonlinear wave-wave interaction source term 

Snl as a part of the model physics. In its full form (e.g., Hasselmann and Hasselmann 1985) 
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the calculation of the Snl interactions requires the integration of a six-dimensional Boltzmann 

integral:   

 

(30) 

 

 

 

where the mapping is symbolically represented by T and the complicated coupling 

coefficient G contains moving singularities.  This integration requires roughly 103 to 104 

times more computational effort than all other aspects of the wave model combined.  Present 

operational constraints require that the computational effort for the estimation of Snl should 

be of the same order of magnitude as the remainder of the wave model.  This requirement 

was met with the development of the Discrete Interaction Approximation (DIA, Hasselmann 

et al., [1985]).  Two decades of experience with the DIA in wave models has identified 

significant shortcomings in the DIA [Tolman et al., 2005].  

When considering the above, it is crucially important for the development of third 

generation wave models to develop an economical yet accurate approximation for Snl.  A 

Neural Network Interaction Approximation (NNIA) was explored to achieve this goal 

[Krasnopolsky et al., 2002 and Tolman et al., 2005].  NNs can be applied here because the 

nonlinear interaction (30) is essentially a nonlinear mapping, symbolically represented by T, 

which relates two vectors F and Snl (2-D fields in this case).  Discretization of S and F (as is 

necessary in any numerical approach) reduces (30) to a continuous mapping of two vectors 

of finite dimensions.  Modern high resolution wind wave models use descretization on a two 
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dimensional grid which leads to S and F vector dimensions on the order of N ∼ 1000.  It 

seems unreasonable to develop a NN emulation of such a high dimensionality (about 1000 

inputs and outputs).  Moreover, such a NN will be grid dependent.          

In order to reduce the dimensionality of the NN and convert the mapping (30) to a 

continuous mapping of two finite vectors that are less dependent on the actual spectral 

discretization, the spectrum F and source function Snl are expanded using systems of two-

dimensional functions, each of which (Φi and Ψq) creates a complete and orthogonal two-

dimensional basis 
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where for the coefficients of decomposition/composition  xi and yq, 

∫∫∫∫ Ψ=Φ= qnlqii SyFx ,
,      (32) 

where the double integral identifies integration over the spectral space.  Now, the developed 

NN emulation relates vectors of coefficients X and Y:  Y = TNN(X).  Typically, n = 20 ÷50 

and m = 100 ÷150 in eq. (31).  Thus, the reduction of the dimensionality of the NN 

emulation is very significant. 

Different approaches to the basis functions choice has been investigated in 

[Krasnopolsky et al., 2002].  Empirical Orthogonal Functions (EOFs) or principal 

components [Lorenz, 1956; Jolliffe, 2002] have been selected [Tolman et al., 2005].  EOFs 

compose a statistically optimal basis.  In the case considered, the basis functions Φi and Ψq 

are functions of two variables f and θ.  The set of spectra F and source terms Snl, which are 

used for the training of the NN, are also used to generate the EOFs for decomposing F and 

Snl.  The main advantage of EOFs is the fast convergence of the decomposition (see 

Fig. 5 
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[Krasnopolsky et al., 2002, Tolman et al., 2005] for more detailes).  A graphical 

representation of the NNIA algorithm is shown in Fig. 5. 

The NNIA is nearly ten times more accurate than DIA.  It is about 105 times faster 

than the original parameterization and only seven times slower than DIA.  As in the case of 

the atmospheric radiation, a careful investigation of the parallel runs with the original ENM 

(the wave model with the original wave-wave interaction) and the HEM run with the NN 

emulation should be performed for the final test of the NN emulation [Tolman et al., 2005].  

4.6 Discussion 

4.6.1 Summary and advantages of the hybrid modeling approach 
In this section, we reviewed a new hybrid paradigm in environmental numerical modeling.  

Within the framework of this paradigm a new type of ENM - a hybrid environmental model 

(HEM) based on a synergetic combination of deterministic modeling and statistical learning 

(using a NN technique) within an HEM is introduced.  This approach uses NNs to develop 

highly accurate and fast emulations of model physics components.  The presented results 

show: 

(i) the conceptual and practical possibility of developing HEMs with accurate NN 

emulations of model components, which preserve the integrity and all the 

detailed features of the original ENM;  

(ii) NN emulations of model physics parameterizations developed by Krasnopolsky 

et al., [2000, 2002, 2005] are practically identical to the original physical 

parameterizations, due to the capability of NN techniques to very accurately 

emulate complex systems like the model physics.  This fact allows the integrity 

and level of complexity of the state-of-the-art parameterizations of model physics 
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to be preserved.  As a result, for example, a HGCM using these NN emulations 

produces climate simulations that are practically identical to those of the original 

GCM.  It is noteworthy that the NN emulation developed has the same inputs and 

outputs as the original parameterization and is used precisely as its functional 

substitute within the model.   

(iii) that accurate NN emulations are robust and very fast (10 to 105 times faster than 

the original parameterization) so the significant speed-up of HEM calculations 

can be achieved without compromising accuracy; 

(iv) that statistical (NN) components can be successfully combined with deterministic 

model components within the HEM so their synergy can be efficiently used for 

environmental and climate modeling without any negative impacts on simulation 

quality; and  

(v) that this productive synergy or new combination of state-of- the-art deterministic 

and NN emulation approaches leads to new opportunities in using HEMs for 

environmental and climate simulations and prediction.  For example new more 

sophisticated parameterizations, or even “superparameterizations” such as a 

cloud resolving model, that are extremely time consuming or even 

computationally prohibitive if used in their original form will become 

computationally “affordable” in HENMs when using their accurate and 

computationally much more efficient NN emulations.  

4.6.2 Limitations of the current hybrid modeling framework 
The development of NN emulations, the core of the hybrid modeling approach, depends 

significantly on our ability to generate a representative training set to avoid using NNs for 
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extrapolation far beyond the domain covered by the training set (see Section 2.3.3).  Because 

of high dimensionality of the input domain that is on the order of several hundreds or more, 

it is rather difficult to cover the entire domain, especially the “far corners” associated with 

rare events, even when we use simulated data for the NN training.  Another related problem 

is that NN emulations are supposed to be developed for an environmental or climate system 

that changes in time.  This means that the domain configuration for a climate simulation 

may evolve over time, for example, when using a future climate change scenario.  In both 

situations described the emulating NN may be forced to extrapolate beyond its 

generalization ability and may lead to errors in NN outputs and result in simulation errors in 

the corresponding HEM.  The next subsection is devoted to addressing these and other 

issues. 

4.6.3 Current and future developments of the hybrid modeling 
approach 

Two new techniques are being developed to take care of the kind of problems outlined in the 

previous section and to make the NN emulation approach suitable for long-term climate 

change simulations and other applications - a compound parameterization (CP) and a NN 

dynamical adjustment (DA) [Krasnopolsky and Fox-Rabinovitz, 2006a,b].  Here they are 

only briefly outlined.  

CP consists of the following three elements: the original parameterization, its NN 

emulation, and a quality control (QC) block.  During a routine HEM simulation with CP, 

QC block determines (at each time step of integration at each grid point) based on some 

criteria whether the NN emulation or the original parameterization has to be used to generate 

physical parameters (parameterization outputs).  When the original parameterization is used 

instead of the NN emulation, its inputs and outputs are saved to further adjust the NN 
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emulation.  After accumulating a sufficient number of these records, a DA of the NN 

emulation is produced by a short retraining using the accumulated input/output records.  

Thus, the adapted NN emulation becomes dynamically adjusted to the changes and/or new 

events/states produced by the complex environmental or climate system. 

There were different possible designs considered for QC [Krasnopolsky and Fox-

Rabinovitz, 2006a,b].  The first and simplest QC design is based on a set of regular physical 

and statistical tests that are used to check the consistency of the NN outputs.  This is the 

simplest, mostly generic but not sufficiently focused approach.  

The second more sophisticated and effective QC design is based on training, for each 

NN emulation, additional NNs to specifically predict the errors in the NN emulation outputs 

from a particular input.  If these errors do not exceed a predefined threshold the NN 

emulation is used; otherwise, the original parameterization is used instead.  A CP of this 

design was successfully tested for the NCAR CAM SWR.  For the SWR NN55 (see Section 

4.4.2) an error NN was trained which estimated a NN55 output error prmse(i) (25) for each 

particular input vector Xi.  Fig. 6 shows the comparison of two error probability density 

functions.  One curve (solid line) corresponds to the emulation errors of NN55, another 

(dashed line) corresponds to the emulation errors of the CP (both errors are calculated vs. 

the original parameterization on the independent test set; vertical axes are logarithmic).  Fig. 

6 demonstrates the effectiveness of CP; the application of CP reduces medium and large 

errors by about an order of magnitude.  It is noteworthy that for this CP less than 2% of the 

SWR NN emulation outputs are rejected by QC and calculated using the original SWR 

parameterization.  Further refinement of the criteria used in the QC may result in a reduction 

in the already small percentage of outliers.  

Fig. 6 
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The third QC design is based on the domain check technique proposed in the context 

of NN applications to satellite remote sensing (see Section 3.4).  In this case, QC is based on 

a combination of forward and inverse NNs.  This design has already been successfully 

applied, as a preliminary study, to the ocean wave model (Section 4.5) [Tolman and 

Krasnopolsky, 2004].   

The parameterization Jacobian, a matrix of the first derivatives of parameterization 

outputs over inputs, may be useful in many cases.  For example, in data assimilation 

applications (an optimal blending of observational and simulated data to produce the best 

possible fields) a Jacobian is used to create an adjoint (a tangent-linear approximation).  A 

Jacobian is also instrumental for a statistical analysis of the original parameterization and its 

NN emulation.  An inexpensive computation of the Jacobian when using a NN emulation is 

one of the advantages of the NN approach.  Using this Jacobian in combination with the 

tangent-linear approximation can additionally accelerate the calculations [Krasnopolsky et 

al., 2002].  However since the Jacobian is not trained, it is simply calculated through the 

direct differentiation of an emulating NN.  In this case the statistical inference of a Jacobian 

is an ill-posed problem and it is not guaranteed that the derivatives will be sufficiently 

accurate (see Section 2.4.4.).   

It is noteworthy that for the type of NN applications considered in this section, the NN 

emulation approach that treats a parameterization of model physics as a single object offers 

a simple and straightforward solution that alleviates the need for calculating the NN 

Jacobian explicitly.  The adjoint tangent-linear approximation of a parameterization (e.g., of 

a radiation parameterization) may be considered as an independent/new parameterization, 

the NN emulation approach can be applied to such a parameterization, and a separate NN 
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emulation can be trained to emulate the adjoint.  For other applications that require an 

explicit calculation of the NN Jacobian, several solutions have been offered and investigated 

(see Sections 2.4.4 and 5.2.2). 

5 NN Emulations of Dependencies Between Model 
Variables 

The output of any complex geophysical numerical model, such as models for atmospheric 

and ocean climate simulations or for numerical weather prediction, contains a great deal of 

data in the form of 2- and 3-D high resolution numerical fields of prognostic and diagnostic 

variables. This output contains, in an implicit form, the highly complex functional 

dependencies and mappings (1) between the state variables of the model. These relationships 

are governed by the physics and dynamics of the numerical model that was used for the 

simulations.   

For example, when 2-D observations like surface wind, surface currents, or sea 

surface elevation are assimilated into an atmospheric or oceanic data assimilation system 

(DAS), the impact of these data in the DAS is localized at the vertical level where they are 

assimilated because there is usually no explicit mechanism in the DAS to propagate the 

impact of these data to other vertical levels and to other variables.  Usually, this propagation 

occurs later, during the integration of the model, in accordance with dependencies 

determined by the model physics and dynamics.  Recently, several attempts have been made 

to extract this kind of simplified linear dependencies from model simulations [Mellor and 

Ezer, 1991] or observed data [Guinehut et al, 2004] for use in an ocean DAS.  However, 

these simplified and generalized linear dependencies that are often derived from local data 

sets do not properly represent the complicated nonlinear relationship between the model 

variables.  If we were able to extract/emulate these dependencies in a simple, but not overly 
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simplified yet adequately nonlinear analytical form, they could be used in the DAS to 

facilitate a more effective 3-D assimilation of the 2-D surface data.  These analytical 

functions and mappings could also be used for efficient model output compression, 

archiving, and dissemination, and for sensitivity studies and error analysis.  The existence of 

a generic technique that would allow the extraction of these nonlinear functions and 

mappings in a compact analytical form would also greatly facilitate the use of model output 

in qualitative and quantitative studies.  It is only recently that initial steps have been taken to 

use the NN technique to accomplish this objective [Tang and Hsieh, 2003; Krasnopolsky et 

al., 2006].  

In Section 5.1 we introduce this generic NN application by using a particular 

application, a NN emulation for sea surface height developed by [Krasnopolsky et al., 2006].  

This application, namely developing NN emulations to extract functions and mappings from 

model outputs for their later use in DAS and for sensitivity and error analysis, requires that 

we obtain a NN emulation Jacobian of reasonable quality.  The Jacobian analysis and 

ensemble approaches that improve the quality of the NN emulation and NN Jacobian 

[Krasnopolsky, 2006] are presented in Section 5.2. 

5.1 SSH Mapping and its NN Emulation 
Sea surface height (SSH), η, is one of the prognostic variables in ocean circulation models.  

The particular ocean model used in this study is the HYbrid Coordinate Ocean Model 

(HYCOM).  This model is a primitive equation model that uses a generalized hybrid 

coordinate (isopycnal/terrain following (σ)/z-level) in the vertical (see [Bleck, 2002] for 

details).  The hybrid coordinate extends the geographic range of applicability of the 

traditional isopycnal (levels of constant water density) coordinate circulation models toward 



 77

shallow coastal seas and unstratified parts of the ocean.  The vertical coordinate evaluation 

for HYCOM is discussed in [Chassignet et al., 2003].  The particular version of HYCOM 

used in this study has a domain that covers the entire Atlantic Ocean with an average 

horizontal resolution of ⅓°; and 25 vertical levels.  

Since the reduced model physics has a mainly 1-D vertical structure, it was assumed 

that SSH η at a particular model grid point (i.e., at a particular horizontal lat/lon) depends 

only on the vector of state variables X at the same horizontal location and the same time.  

Therefore, this dependence (a target mapping) can be written as 

(33) 

whereφ  is a nonlinear continuous function and X is a vector that represents a complete set of 

state variables, which determine SSH.  In this particular case the vector X was selected as 

},,{ mixzIX θ= , where I is the vector of the interfaces (the vertical coordinates used in 

HYCOM), θ is the potential temperature vector, and  zmix is the depth of the ocean mixed 

layer, for a total of 50 variables.  This set of variables represents or is used as a proxy for the 

physics of the deep ocean.  Therefore, the mapping (33) with this particular selection of 

components for the vector X will not be applicable in coastal areas (where the depth is less 

then 250 – 500 m).  In the coastal areas a different set of state variables should be selected.  

All the statistics presented later in this section were calculated using a test set where coastal 

areas were excluded. 

The NN technique is applied to derive an analytical NN emulation for the 

relationship between model state variables, X, and SSH η,  

(34) 

)(Xφη =

)(XNNNN φη =
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using the simulated model fields which are treated as error free data.  A simulation that 

covers almost two years (from Julian dates 303, 2002 to 291, 2004) was used to create 

training, validation and test data sets.  Training and validation data sets cover the period 

from 300, 2002 to 53, 2004 and an independent test set – the period from 53, 2004 to 291, 

2004.  Each data set consists of N = 536,259 records {ηi, Xi}i = 1,…,N collocated in space and 

time and uniformly distributed over the model domain. 

As mentioned earlier, the accuracy of the NN emulation is evaluated over the model 

domain (excluding coastal areas) using the test set.  The improvement in the accuracy of the 

NN emulation (RMSE) with the increase in the complexity (the number of hidden neurons) 

of the emulating NN was evaluated.  All trained NNs have 50 inputs and one output in 

accordance with the dimensionalities of the target mapping (33).  The number of hidden 

neurons k varied from 3 to 100.  No significant and consistent improvement in the RMSE 

after the number of hidden neurons k reaches the values of 5 – 10 was found; the further 

improvement did not exceed 0.25 cm.  Therefore, to limit NN complexity and improve its 

interpolation abilities (see Section 2.4.3), only NNs with k ≤ 10 were used in the following 

investigation.   

In the next test applied to the NN emulation, the last day of the entire simulation 

(291, 2004) was selected.  This day is separated by a time interval of about eight months 

from the last day of the simulation used for training and validation (52, 2004).  Fields 

generated by the model at 00Z were used to create inputs, X, for the NN emulation (34).  

Then the NN emulation (34) was applied over the entire domain to generate the 2-D field of 

ηNN.  This field was compared with the corresponding field of SSH η generated by the 

model.  With the exception of several spots (most of them still close to the coastal areas) the 
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difference between two one-day fields does not exceed ± 10 cm.  The accuracy of the NN 

emulation over the entire domain is considered to be satisfactory; the bias is about 1cm and 

RMSE is about 4.7 cm.  This conclusion about the accuracy of the NN emulation (34) is 

based on the fact that the NN emulation will be used in the DAS together with satellite 

measurements of SSH that have an accuracy on the order of 5 cm or less.  

The accuracy of the NN emulation may be improved using a NN ensemble approach 

(see the next section).  The use of the NN emulation in DAS is conditioned by the quality of 

the NN Jacobian.  The accuracy of the NN Jacobian and the possibility of improving this 

accuracy by using NN ensembles are also discussed in the next section. 

5.2 NN Ensembles for improving NN emulation accuracies and 
reducing NN Jacobian uncertainties 

As mentioned in Section 2.4.3, it is desirable to keep the NN emulation complexity (the 

number of hidden neurons) at the minimum in order to improve NN generalization 

(interpolation) ability and the stability of the NN Jacobian; however, minimization of the 

NN complexity reduces the approximation accuracy of NN emulations.  Using an NN 

ensemble approach (see Section 2.4.5) is a way around this dilemma.    

In the context of the problem described in the previous subsection, the NN ensemble 

approach leads to the following solution.  The complexity of the NN emulation (34) was 

limited; only three hidden neurons were allowed.  Then ten NN emulations (34) with the 

same number of hidden neurons were trained using differently perturbed initial conditions 

for the NN weights.  As a result, a NN ensemble that consists of ten members, ten NN 

emulations of identical architecture (50 inputs, 1 output, and 3 neurons in 1 hidden layer) but 

with different weights, different approximation accuracies, and different Jacobians has been 
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created.  When four or five neurons in one hidden layer were selected for the NN 

architecture, the obtained results were similar to those presented below.    

5.2.1 NN ensembles for improving the accuracy of a NN emulation;  
linear vs. nonlinear ensembles  

After the NN ensemble was created, each NN member (a particular realization of the NN 

emulation (34)) was applied to the test set and the error statistics for each NN member were 

calculated and plotted in Fig. 7 (left).  The vertical axis of the figure shows the random part 

of the approximation error (the standard deviation of the error) and the horizontal axis the 

value of the systematic error (bias).  Both errors are normalized to the corresponding 

maximum member error (member bias or error standard deviation).  Each ensemble member 

is represented in this figure by a star.  The spread of the ensemble members is significant in 

this figure.  The systematic error changes about 25% and the random error about 10% for 

different members.   

The next step was to produce the ensemble average, which can be produced in 

different ways [Barai, and Reich, 1999].  The first averaging approach used here is the 

simplest linear method of ensemble averaging – a conservative ensemble [Barai, and Reich, 

1999].  Each of ten NN ensemble members was applied to the test set record by record.  

Thus, for each record (set of inputs) ten NN outputs were produced.  Then the mean value 

(in a regular statistical sense) of these ten numbers was calculated and compared to the exact 

output to calculate the ensemble statistics represented by the cross in Fig. 7 (left).  The 

ensemble bias is equal to the mean bias of the members as expected when using this simple 

linear method of calculating the ensemble average.  Fig. 7 (left) also illustrates the known 

fact that ensemble approaches are very effective in reducing random errors; it shows that the 

ensemble random error is less than the random error of any of the ensemble members.  The 
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reduction in systematic (~15%) and random (~9%) errors with respect to the maximum 

single member errors is moderate but still significant.    

The conservative ensemble is simple; however, it is linear and therefore completely 

neglects nonlinear correlations and dependencies between ensemble members.  То estimate 

the contribution of these nonlinear correlations and to use them to improve ensemble 

averaging we developed a nonlinear ensemble that uses an additional averaging NN to 

calculate the ensemble average.  The inputs to the averaging NN are composed of the 

outputs from the ensemble member NNs.  The number of inputs to the averaging NN is 

equal to the number of ensemble members (10 in this case) multiplied by the number of 

outputs in a single ensemble member NN (one in our case).  It has the same single output as 

a single ensemble member NN in this particular case.  The averaging NN was trained using 

training and validation sets prepared on the same basis as the training and validation sets 

used for training the ensemble member NNs.  The test statistics presented here were 

calculated using the test set. 

The result for the nonlinear ensemble using the averaging NN is shown in Fig. 7 by a 

diamond.  It shows that the magnitude of the nonlinear correlations between ensemble 

members is significant and can be successfully used to improve ensemble accuracy.  A 

comparison of the positions of the cross and the diamond in Fig. 7 (left) shows that 

compared to the conservative ensemble, the nonlinear ensemble gives an additional 

improvement in bias on the order of 10%.  The nonlinear ensemble bias is close to the 

minimum ensemble member bias.  An additional improvement in the random error is a bit 

smaller (about 5%) but still significant.    

Fig. 7 
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Fig. 7 (right) shows statistics for extreme outliers.  When each ensemble member NN 

is applied to the test set, the NN produces an output with an error for each record.  Among 

all these errors, there exists one largest negative (or minimum) error and one largest positive 

(or maximum) error, or two extreme outliers that demonstrate the worst case scenarios that 

can be expected from this particular NN emulation.  These two extreme outliers for each NN 

member are represented in Fig. 7 (right) by a star.  Each ensemble also generates these two 

extreme outliers, shown by the cross for the conservative ensemble and the diamond for the 

nonlinear ensemble in Fig. 7 (right). 

Fig. 7 (right) shows that the NN ensemble approach is an effective tool in reducing 

extreme outliers (by ~25%).  However, a careful analysis of the figure reveals also other 

interesting features of the statistics presented in this figure.  The distribution of stars shows a 

significant spread, and also demonstrates a significant clustering and correlation between the 

extreme outliers produced by ensemble members.  These facts, and the position of the 

conservative ensemble (cross) in the figure, suggest that the members of the ensemble are 

correlated nonlinearly.  The significant improvement introduced by the nonlinear ensemble 

(diamond) supports this conclusion.  This technique was also applied with similar results 

[Fox-Rabinovitz et al., 2006] to NN emulations developed for the LWR parameterization of 

NCAR CAM (see Section 4.4).   

5.2.2 NN ensembles for reducing the uncertainty of the NN Jacobian 
The NN emulation (34) can be used in the ocean DAS to enhance assimilated SSH and to 

improve the propagation of the surface SSH signal to other vertical levels and other           

variables.  In the ocean DAS the increment of SSH Δη is calculated using the NN Jacobian 
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where ΔXi are increments of state variables, X0 is an initial value of state variables and n is 

the dimensionality of the vector X (the number of inputs of the NN emulation (34)).  Then 

the calculated ΔηNN is compared with the observed Δηobs and the difference is used to adjust 

ΔX. 

The quality of the single NN Jacobian may not be sufficient to allow its use in DAS 

applications.  However, an ensemble approach can be used to improve the NN Jacobian 

calculations.  The NN ensemble described in the previous subsection was used to create an 

ensemble of ten NN Jacobians, 
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Now Eq. (35) was used to calculate ΔηNN using each ensemble member’s Jacobian and the 

ensemble average Jacobian (36).  These values of ΔηNN were compared with the exact Δη 

known from the model simulation.  

  This comparison technique was applied to the last day of the entire model 

simulation.  This date is separated by about 8 months from the last day of the simulation 

used for the NNs training and validation.  The fields generated by the model at 00Z were 

used to create inputs X for the NN emulation Jacobians.  Then the NN emulation Jacobian 

ensemble members were applied over the entire domain (excluding coastal areas) to 

generate an ensemble of 2-D fields of j
NNηΔ using Eq. (35).  Also, NNηΔ  was calculated 
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using the ensemble average Jacobian (36) in (35).  A non-dimensional distance in the model 

state space between the vectors X0 and X = X0 + ΔX was also introduced, 
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Fields calculated in this way were compared with the corresponding field SSH η 

generated by the model.  Multiple case studies were also performed at particular 

locations inside the model domain.  The results of one such case study are presented in 

Figs. 8 – 10.   

Fig. 8 shows the location of the cross-section (a white horizontal line) inside the 

model domain; the white dot shows the position of X0.  Starting from this position we moved 

to the left and right grid point by grid point, using X values at these grid points to calculate 

ΔX and the non-dimensional distance in the model state space, S (37).  These values of ΔX 

were used in (35) to calculate Δη.   

Fig. 9 shows Δη calculated using (35) and the NN ensemble member Jacobians (an 

envelope of thin solid lines illustrates the Jacobian uncertainties), the exact Δη calculated 

from the model (thick solid line), and Δη calculated using the ensemble average Jacobian 

(36) (thick dashed line).  Δη is shown vs. the distance in the model state space, S.  This 

figure demonstrates how significantly the NN Jacobian can be improved by using the 

ensemble average.  The larger the distance S, the more significant the reduction of the 

Jacobian uncertainties becomes. 

Fig. 10 (left) shows the bias and random error for Δη calculated along the path 

shown in Fig. 8 using (35).  The asterisks correspond to the errors when ensemble member 

Jacobians were used in (35), and the cross to the ensemble average Jacobian (36).  The 

Fig. 8 

Fig. 9 
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ensemble bias is equal to the mean bias of the members as expected when using this simple 

method to calculate the ensemble average.  This figure also shows that in the case of 

Jacobian the ensemble approach very effectively reduces random errors or error SD; the 

ensemble random error (~1.1 cm) is less than the random error of any ensemble member.  

The reduction in bias (~90%) and random error (~65%) with respect to the maximum single 

member errors is very significant. 

Fig. 10 (right) shows minimum and maximum errors along the path or the statistics 

for extreme outliers.  When each ensemble member NN Jacobian is applied to (35), an 

output is produced with an error.  Among all these errors there exist one largest negative or 

minimum error and one largest positive or maximum error, or two extreme outliers that 

demonstrate the worst case behavior that we can expect from this particular NN emulation.  

These two extreme outliers (negative and positive) for each NN member are represented in 

the figure by stars.  When used in (35), the ensemble average Jacobian (36) also generates 

two extreme outliers that are represented in the figure by the cross.  This figure shows that 

the NN ensemble approach is also an effective tool for reducing large errors (by ~4 times) in 

NN Jacobians. 

Then this same procedure was applied at all grid points in the model domain.  The 

errors have been calculated along numerous paths (both horizontal and vertical) all over the 

model domain.  The RMS error in Δη was calculated as a function (averaged in each bin) of 

the non-dimensional distance S over the entire domain.  The ensemble significantly 

improves statistics at all distances S considered.  In this case, the ensemble is always better 

than the best ensemble member.  

Fig. 10 
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To better understand the magnitudes of errors presented in this and the previous 

section, these magnitudes should be compared with the errors in the observed satellite data 

Δηobs assimilated in the oceanic DAS (see the previous subsection).  The accuracy of the 

observed data is about 5 cm.  That means our NN emulation (33) and the ensemble 

techniques allow a reduction in the Jacobian uncertainties and produce an ensemble 

Jacobian (36) that is sufficiently accurate to be used in ocean DASs. 

5.3 Discussion 
The NN application described in Section 5.1 is an important application per se.  The output 

of any complex geophysical numerical model contains, in an implicit form, the highly 

complex functional dependencies and mappings between the model variables.  The functions 

and mappings provided by the NN emulation approach in a simple analytical form (34) 

could be used to improve understanding of the underlying nonlinear dependencies, which is 

a matter of a great scientific interest and practical importance.  These NN emulations can 

also be used for efficient model output compression, archiving, and dissemination, and for 

sensitivity studies and error analysis. 

On the other hand, a transition from the raw model output data to analytical 

equations like (34) can be considered as a first step in a new field of science dealing with 

knowledge generalization, structuring, and compression.  This field is very new and very 

broad; the example in Section 5.1 is one particular example in one particular subfield; 

however, it definitely points in the direction of knowledge generalization.  This example 

shows that NNs and similar techniques also have a realistic potential to become a generic 

tool in the new field of knowledge generalization, structuring, and compression.  
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It is also clear that the ensemble approaches introduced in Section 5.2 within the context 

of ocean sea surface elevation mapping are generic approaches that can be used and have 

been already used [Fox-Rabinovitz et al., 2006] in other applications.  In particular, a new 

ensemble approach introduced in Section 5.2.2 to reduce uncertainties in the NN emulation 

Jacobian has a wide area of application where a calculation of the NN Jacobian in a NN 

application is also desirable.     

6 Conclusions 
 
During the last several decades an objective generic trend surfaced in geophysical studies, 

from simple, low-dimensional, single-disciplinary linear or weakly nonlinear geophysical 

processes and systems to those that are complex, multidimensional, interdisciplinary and 

nonlinear.  This trend is closely followed by a trend in geophysical modeling (including 

statistical modeling); a transition from simple, low-dimensional, linear or weakly nonlinear 

models to complex, multidimensional, nonlinear models and from simple, linear statistical 

tools like linear models and linear regressions to sophisticated, nonlinear statistical tools like 

nonlinear regressions, NNs, support vector machines, etc. 

Transitioning to nonlinear models and statistical tools showed their generally greater 

adequacy in addressing the problems that are considered by modern geophysics.  This 

transition and the following intensive use of nonlinear statistical tools and models also 

revealed their complexity and flexibility that, if not controlled properly, may lead in some 

cases to undesirable results and erroneous predictions.  What should the strategy be in this 

situation?  Should we return to simple linear tools and models?  Unfortunately, we cannot do 

that because the objects of our study have become essentially complex and nonlinear.  In our 

opinion, the only productive approach in this situation is to apply to the objects of our study 
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extensively nonlinear statistical tools and models that are adequate, and to learn how to 

control possible undesirable side effects while maximizing the advantages that the 

complexity and flexibility of these nonlinear models and tools offer to our studies. 

In discussions included in this review, we tried to emphasize that the transition from 

linear statistical tools to nonlinear ones (like NNs) requires, to some extent, an adjustment of 

our thinking process or our philosophy.  For example, when we deal with relatively simple 

linear systems and use linear statistical tools (such as a simple linear regression) to model 

these systems, we can assume in some cases that parameters of our statistical model have a 

physical meaning, that they are directly related to characteristics of physical processes 

and/or tell us something about the physical structure of the system under consideration.  

When we deal with complex nonlinear systems and apply nonlinear statistical tools (like 

NNs) we probably should, from the beginning, focus on getting good predictions of the 

behavior of the system under consideration but not on giving physical interpretations to the 

multiple parameters of our nonlinear model [Vapnik and Kotz, 2006]. 

In this review, we presented and discussed one particular type of NN technique – the 

MLP NN – and one particular application of this NN, the NN Emulations for Complex 

Multidimensional Geophysical Mappings.  It was shown that even this one generic NN 

application and type of NN technique cover a great variety of important problems in 

atmospheric and oceanic sciences and can provide us with flexible, accurate, and fast 

nonlinear solutions for these problems.  There are other generic applications (like the 

classification problems [Hansen and Salamon, 1990; Sharkey, 1996; Opitz and Maclin, 

1999]) that can be successfully solved using MLP NNs [Lippmann, 1989; Marzban and 

Stumpf, 1996; Hennon et al., 2003].  There are also other types of NNs that provide 
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solutions to other generic applications (like the pattern recognition problems [Ripley, 1996; 

Nabney, 2002]), but this review does not deal directly with these types of NNs and NN 

applications.  However, many generic issues are discussed here like NN building blocks, the 

complexity and dimensionality of the problem and corresponding complexity and 

dimensionality of the NN that provides a solution, and NN generalization capabilities.  

These generic issues and their discussions are applicable to other types of NNs and other NN 

applications.          
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Tables 
Table 1.  Some NN Applications in Climate and Weather Related Fields. 

The list of applications included in the table is not exhaustive and is limited by the knowledge of the author. 
The sequence of applications does not reflect their importance and is more or less arbitrary.  The references 
included in the column “Publications” are representative papers which deal with this particular application.  
When we had sufficient information, we included the first (to the best of our knowledge) publication of this 
application.  Applications that are discussed in more details in this paper are shown in italic in the table.  
 

NN APPLICATION PUBLICATIONS 
I.   Satellite Meteorology and Oceanography 

I.1 Classification  Bhattacharya and Solomatine [2006] 
I.2 Pattern Recognition, Feature Extraction Bankert [1994] 
I.3 Change Detection & Feature Tracking Valdés and Bonham-Carter [2006] 
I.4 Fast Forward Models for Variational 

Retrievals  
Krasnopolsky [1997] 

Accurate Transfer Functions (Retrieval Algorithms) 
 
I.5.1   Surface Parameters Stogryn et al. [1994];  Krasnopolsky and Schiller 

[2003] 

I.5 

I.5.2   Atmospheric Profiles Aires et al. [2002]; Mueller et al. [2003] 
II.   Predictions 

I.1 Geophysical Time Series Elsner and Tsonis [1992] 
I.2 Regional and Global Climate   Pasini et al. [2006] 
I.3 Time Dependent Physical Processes Wu et al. [2006] 

III.   Hybrid Climate and Weather Numerical Models and Data Assimilation Systems 
III.1 New Hybrid Parameterizations of 

Physics 
Chevallier et al. [1998] 

III.2 Fast Emulations of Model Physics Krasnopolsky et al. [2002, 2005a] 
III.3 Fast Forward Models for Direct 

Assimilation 
Krasnopolsky [1997] 

III.4 Forward Models for Propagating a 
Signal to Different Vertical Levels and 
Variables   

Krasnopolsky [2006] 

III.5 Hybrid Coupled Models Tang and Hsieh [2003] 
IV.   Geophysical Data Fusion Loyola and Ruppert [1998] 
V.   Geophysical Data Mining Brown and Mielke [2000] 

VI.   Interpolation and Downscaling Dibike and Coulibaly [2006] 
VII.   Nonlinear Multivariate Statistical 

Analysis 
Hsieh [2004] 

VIII.  Hydrology Bhattacharya et al., [2005] 
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Table 2. Comparison of physically based (PB) radiative transfer and empirical NN 

forward models under clear and clear+cloudy (in parentheses) weather conditions. 

BT RMS Error (°K) Author Type 

Vertical Horizontal 

P & K (1992) PB 1.9 (2.3) 3.3 (4.3) 

Wentz (1997) PB 2.3 (2.8) 3.4 (5.1) 

Krasnopolsky (1997) NN, emp. 1.5 (1.7) 3.0 (3.4) 
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Table 3. Error budget (in m/s) for different SSM/I wind speed algorithms under clear 

and clear+cloudy (in parentheses) conditions. 

Algorithm Method Bias 

in m/s 

Total RMSE 

in m/s 

RMSE  in m/s 

for W > 15 m/s 

GSW1 Multiple linear 

regression 

-0.2 (-0.5) 1.8 (2.1) (2.7) 

GSWP2 Generalized Linear 

regression 

-0.1 (-0.3) 1.7 (1.9) (2.6) 

GS3 Nonlinear 

regression 

0.5 (0.7) 1.8 (2.5) (2.7) 

Wentz4 Physically-based 0.1 (-0.1) 1.7 (2.1) (2.6) 

NN15 Neural network -0.1 (-0.2) 1.5 (1.7) (2.3) 

NN26 Neural network (-0.3) (1.5) – 

1Goodberlet et al., 1989 2Petty, 1993 3Goodberlet and Swift, 1992  4Wentz, 1997 

5Krasnopolsky et al., 1996,1999   6Meng et al., 2006 
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Table 4.  Time (40-years) and global means for mass (mean sea level pressure) and other 

model diagnostics for the NCAR CAM-2 climate simulations with the original LWR & 

SWR parameterizations (in GCM) – row 1, their NN emulations (in HGCM), and their 

differences (in %).  NN50 (LWR) and NN55 (SWR) are used.  Rows 3 and 4 show results 

for HGCM with LWR NN emulation only and differences vs. the original GCM.  Rows 5 

and 6 show results for HGCM with SWR NN emulation only and differences vs. the 

original GCM.  Rows 7 and 8 show results for HGCM with both NN emulations and 

differences vs. the original GCM. 

Fields 

GCM versions 

Mean Sea 

Level 

Pressure 

(hPa) 

Surface 

Temperature 

(°K) 

Total 

Precipitation 

(mm/day) 

Total 

Cloudiness 

(fractions, %) 

Wind at 12 

km (m/s) 

GCM with the original 

LWR & SWR 

Parameterizations 

1011.48 289.02 2.86 60.71 16.21 

HGCM with LWR NN 

Emulation 

1011.48 288.97 2.89 61.26 16.16 

Difference in % 0. 0.02 1.04 0.9 0.3 

HGCM with SWR NN 

Emulation 

1011.49 288.97 2.86 60.89 16.20 

Difference in % 0.001 0.02 0. 0.3 0.06 

HGCM with LWR & 

SWR NN Emulations 

1011.50 288.92 2.89 61.12 16.29 

Difference in % 0.002 0.03 1.04 0.6 0.5 
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Figure Captions 
Fig. 1.  Simplest feed-forward (data propagate forward from input to output), fully 

connected (each neuron in the previous layer is connected to each neuron in the following 

layer) MLP NN.   The input layer consists of the input neurons xi, the hidden layer consists 

of the hidden neurons zj, and the output layer consists of the output neurons yq. 

 

Fig. 2.  A generic neuron (3).  In general, it consists of a linear and a nonlinear part.  In our 

case, the output neurons, yq, in Eq. (2) have only linear part. 

 

Fig. 3. The convergence of root mean square errors (23, 24, and 26).  Solid line – RMSEm 

(24) for m = 26, dashed line – RMSE (23), and dotted line – PRMSE (26).   

 

Fig. 4. The vertical error profiles (27), rmsep(j), for the “optimal” LWR NN emulation with 

50 hidden neurons (NN50) – solid line and for the “optimal” SWR NN emulation with 55 

hidden neurons (NN55) – dashed line. 

 

Fig. 5. Graphical representation of the NNIA algorithm. 

 

Fig. 6.  Probability density distributions of emulation errors for the SWR NN emulation 

NN55 (solid line) and for the compound SWR parameterization.  Both errors are calculated 

vs. the original SWR parameterization.  Compound parameterization reduces the probability 

of medium and large errors by an order of magnitude.  Horizontal axis is RMSE in K/day; 

vertical axis is logarithmic. 

  

Fig. 7. The left panel: the random part of the emulation error (the standard deviation, SD, of 

the error) normalized to the maximum member error (the vertical axis) and the systematic 

error (bias) also normalized to the maximum member error (the horizontal axis); each 

ensemble member is represented by a star, the conservative ensemble average – by the cross, 

and the nonlinear ensemble using the averaging NN by the diamond at the figure.  The right 

panel shows extreme outliers’ statistics: vertical axis shows the largest positive (or 

maximum) and the horizontal axis – the largest negative (or minimum) emulation error over 
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the entire test set; each ensemble member is represented by a star, the conservative ensemble 

– by the cross, and the nonlinear ensemble – by the diamond at the figure.   

 

Fig. 8. The location of the cross section (white horizontal line) inside the model domain; 

white dot show the position of X0.  The picture is plotted in the internal model coordinates. 

 

Fig. 9. Δη calculated using (35) and the NN ensemble member Jacobians (an envelope of 

thin solid lines that illustrates the Jacobian uncertainties), exact Δη calculated from the 

model (thick solid line), and Δη calculated using the ensemble average Jacobian (36) (thick 

dashed line).  Δη is shown vs. the distance in the model state space, S (37).  

 

Fig. 10 The left panel: the systematic error (bias) and the random error (error standard 

deviation) for Δη calculated along the path shown in the upper right panel using (35); the 

stars correspond to errors when the ensemble member Jacobians were used in (35), the cross 

corresponds to the case when the ensemble average Jacobian (36) was used.  The right panel 

shows the minimum and maximum errors along the path; the stars correspond to errors when 

the ensemble member Jacobians were used in (35) and the cross to when the ensemble 

average Jacobian (36) was used in (35).   
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Figures 

 

  
Fig. 1.  Simplest feed-forward (data propagate forward from input to output), fully 

connected (each neuron in the previous layer is connected to each neuron in the following 

layer) MLP NN.   The input layer consists of the input neurons xi, the hidden layer consists 

of the hidden neurons zj, and the output layer consists of the output neurons yq. 
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Fig. 2.  A generic neuron (3).  In general, it consists of a linear and a nonlinear part.  In our 

case, the output neurons, yq, in Eq. (2) have only linear part.   
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Fig. 3. The convergence of root mean square errors (23, 24, and 26).  Solid line – RMSEm 
(24) for m = 26, dashed line – RMSE (23), and dotted line – PRMSE (26).  
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Fig. 4. The vertical error profiles (27), rmsep(j), for the “optimal” LWR NN emulation with 

50 hidden neurons (NN50) – solid line and for the “optimal” SWR NN emulation with 55 

hidden neurons (NN55) – dashed line. 
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Fig. 5. Graphical representation of the NNIA algorithm.   
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Fig. 6.  Probability density distributions of emulation errors for the SWR NN emulation 

NN55 (solid line) and for the compound SWR parameterization.  Both errors are calculated 

vs. the original SWR parameterization.  Compound parameterization reduces the probability 

of medium and large errors by an order of magnitude.  Horizontal axis is RMSE in K/day; 

vertical axis is logarithmic. 
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Fig. 7.  The left panel: the random part of the emulation error (the standard deviation, SD, of 

the error) normalized to the maximum member error (the vertical axis) and the systematic 

error (bias) also normalized to the maximum member error (the horizontal axis); each 

ensemble member is represented by a star, the conservative ensemble average – by the cross, 

and the nonlinear ensemble using the averaging NN by the diamond at the figure.  The right 

panel shows extreme outliers’ statistics: vertical axis shows the largest positive (or 

maximum) and the horizontal axis – the largest negative (or minimum) emulation error over 

the entire test set; each ensemble member is represented by a star, the conservative ensemble 

– by the cross, and the nonlinear ensemble – by the diamond at the figure.   
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Fig. 8. The location of the cross section (white horizontal line) inside the model domain; 

white dot show the position of X0.  The picture is plotted in the internal model coordinates. 
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Fig. 9. Δη calculated using (35) and the NN ensemble member Jacobians (an envelope of 

thin solid lines that illustrates the Jacobian uncertainties), exact Δη calculated from the 

model (thick solid line), and Δη calculated using the ensemble average Jacobian (36) (thick 

dashed line).  Δη is shown vs. the distance in the model state space, S (37).  
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Fig. 10 The left panel: the systematic error (bias) and the random error (error standard 

deviation) for Δη calculated along the path shown in the upper right panel using (35); the 

stars correspond to errors when the ensemble member Jacobians were used in (35), the cross 

corresponds to the case when the ensemble average Jacobian (36) was used.  The right panel 

shows the minimum and maximum errors along the path; the stars correspond to errors when 

the ensemble member Jacobians were used in (35) and the cross to when the ensemble 

average Jacobian (36) was used in (35).   

 

 


